ATI TEAS 7
TEAS Exam Math Practice
1. Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
- A. The median and the mean are equal.
- B. The mean is less than the mode.
- C. The mode is greater than the median.
- D. The median is less than the mean.
Correct answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.
2. Divide 52 by 27 and 51 by 27 and simplify.
- A. 52/27
- B. 51/27
- C. 52/29
- D. 51/29
Correct answer: A
Rationale: To divide 52 by 27 and 51 by 27, you get 52/27 and 51/27, respectively. When simplified, 52/27 is the correct answer. The other choices, 51/27, 52/29, and 51/29, are incorrect because they do not reflect the correct result of dividing the given numbers.
3. The cost of renting a bicycle is $3.60 per hour. Which equation shows the best relationship between the total cost (C) and the number of hours (h) rented?
- A. C = 3.60h
- B. C = h + 3.60
- C. C = 3.60h + 10.80
- D. C = 10.80h
Correct answer: A
Rationale: The best relationship is C = 3.60h because the cost increases by $3.60 for each hour of rental. This equation represents a linear relationship where the total cost (C) is directly proportional to the number of hours rented (h). Choice B (C = h + 3.60) is incorrect because it wrongly assumes a fixed additional cost of $3.60 regardless of the number of hours rented. Choice C (C = 3.60h + 10.80) is incorrect as it overestimates the initial cost. Choice D (C = 10.80h) is incorrect as it implies a constant rate of $10.80 per hour, which is not the case.
4. A soccer field is rectangular in shape and is 100 meters long and 75 meters wide. The hectare is a metric unit of area often used to measure larger areas. Given that 1 hectare = 10,000 square meters, which of the following represents the soccer field’s area in hectares?
- A. 0.75 hectares
- B. 7.5 hectares
- C. 7,500 hectares
- D. 75,000,000 hectares
Correct answer: A
Rationale: To find the area of the soccer field, multiply its length by its width: 100 meters × 75 meters = 7500 square meters. To convert this to hectares, divide by 10,000 (since 1 hectare = 10,000 square meters), resulting in 0.75 hectares. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not correctly convert the area to hectares. B and C are off by a factor of 10, while D is off by a factor of 10,000.
5. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 30 cm². What is the actual area of the room?
- A. 30,000 cm²
- B. 300 m²
- C. 3,000 m²
- D. 30 m²
Correct answer: D
Rationale: On a 1:100 scale drawing, each centimeter represents one meter. The area of the room in the scale drawing is 30 cm², which means the actual area is 30 m². Choice A (30,000 cm²) is incorrect as it doesn't account for the scale conversion. Choice B (300 m²) is incorrect because it multiplies the scale area directly by 10,000, which is not the correct conversion. Choice C (3,000 m²) is also incorrect as it applies the scale factor incorrectly.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access