ATI TEAS 7
TEAS Practice Math Test
1. How many milligrams are in 5 grams?
- A. 0.005 mg
- B. 50 mg
- C. 500 mg
- D. 5000 mg
Correct answer: D
Rationale: To convert grams to milligrams, you need to multiply by 1000 since 1 gram is equal to 1000 milligrams. Therefore, 5 grams is equal to 5 * 1000 = 5000 milligrams. Choices A, B, and C are incorrect because they do not correctly convert grams to milligrams. Choice A is incorrect as it represents a decrease in value instead of an increase when converting from grams to milligrams. Choice B is incorrect because it is a factor of 10 lower than the correct answer. Choice C is incorrect as it is a factor of 10 lower than the correct answer. Thus, the correct answer is D, 5000 mg.
2. How will the number 847.89632 be written if rounded to the nearest hundredth?
- A. 847.90
- B. 900
- C. 847.89
- D. 847.896
Correct answer: A
Rationale: When rounding to the nearest hundredth, we look at the digit in the thousandth place, which is 8. Since the next digit, in the ten-thousandth place, is 9 (greater than or equal to 5), we round up the hundredth place digit. Therefore, 847.89632 rounded to the nearest hundredth is 847.90. Choice B (900) is incorrect as it does not round the number to the nearest hundredth. Choice C (847.89) is also incorrect as it drops the digit 6 in the ten-thousandth place. Choice D (847.896) does not round the number to the nearest hundredth as it retains the thousandth place digit 3.
3. Which of the following statements is true?
- A. The mean is less than the median
- B. The mode is greater than the median
- C. The mode is less than the mean, median, and range
- D. The mode is equal to the range
Correct answer: A
Rationale: The mean is the average of a set of numbers, while the median is the middle value when the numbers are arranged in order. If a set of numbers is skewed to one side with some outliers, the mean can be influenced by these extreme values, causing it to be greater or less than the median. In cases of skewed distribution, the mean typically shifts towards the direction of the outliers, making it less than the median. Choice B is incorrect because the mode, which is the most frequent number in a dataset, may or may not be greater than the median. Choice C is incorrect because the mode can be greater than the mean or median, depending on the data. Choice D is incorrect because the mode, representing the most frequent value, has no direct relationship with the range, which is the difference between the highest and lowest values in a dataset.
4. When the sampling distribution of means is plotted, which of the following is true?
- A. The distribution is approximately normal.
- B. The distribution is positively skewed.
- C. The distribution is negatively skewed.
- D. There is no predictable shape to the distribution.
Correct answer: A
Rationale: When the sampling distribution of means is plotted, the distribution tends to be approximately normal, especially as the sample size increases. This phenomenon is described by the Central Limit Theorem, which states that the sampling distribution of the sample mean will be normally distributed regardless of the shape of the original population distribution as long as the sample size is sufficiently large. Choices B and C are incorrect because sampling distributions of means are not skewed. Choice D is incorrect because there is a predictable shape to the distribution, which is approximately normal.
5. If a product's original price is $80 and it is discounted by 20%, what is the final price?
- A. 64
- B. 60
- C. 70
- D. 66
Correct answer: A
Rationale: To find the discounted price, you first calculate 20% of the original price: 20% of $80 is $16. Subtracting this discount amount from the original price gives the final price: $80 - $16 = $64. Therefore, the final price after a 20% discount on a product originally priced at $80 is $64. Choice B, $60, is incorrect because it does not account for the correct discount amount. Choice C, $70, is incorrect as it does not reflect the reduction due to the 20% discount. Choice D, $66, is incorrect as it miscalculates the discounted price.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access