ATI TEAS 7
TEAS Test Math Prep
1. Simplify the following expression: 5/9 × 15/36
- A. 5/36
- B. 8/27
- C. 10/17
- D. 15/27
Correct answer: A
Rationale: To simplify the given expression, multiply the numerators together and the denominators together. 5/9 × 15/36 = (5 × 15) / (9 × 36) = 75 / 324. Now, simplify the resulting fraction by finding the greatest common divisor (GCD) of 75 and 324, which is 3. Divide both the numerator and denominator by 3 to get the simplified fraction: 75 ÷ 3 / 324 ÷ 3 = 25 / 108. Therefore, the simplified form of 5/9 × 15/36 is 25/108, which is equivalent to 5/36. Choice A, 5/36, is the correct answer. Choice B, 8/27, is incorrect as it does not match the simplified form of the expression. Choice C, 10/17, is unrelated and does not result from the given multiplication. Choice D, 15/27, does not correspond to the simplification of the given expression.
2. Express the solution to the following problem in decimal form:
- A. 0.042
- B. 84%
- C. 0.84
- D. 0.42
Correct answer: C
Rationale: The correct answer is C: 0.84. To convert a percentage to a decimal, you divide the percentage value by 100. In this case, 84% divided by 100 equals 0.84. Choice A, 0.042, is not the correct conversion of 84%. Choice B, 84%, is already in percentage form and needs to be converted to a decimal. Choice D, 0.42, is not the correct conversion of 84% either. Therefore, the correct decimal form of 84% is 0.84.
3. When the sampling distribution of means is plotted, which of the following is true?
- A. The distribution is approximately normal.
- B. The distribution is positively skewed.
- C. The distribution is negatively skewed.
- D. There is no predictable shape to the distribution.
Correct answer: A
Rationale: When the sampling distribution of means is plotted, the distribution tends to be approximately normal, especially as the sample size increases. This phenomenon is described by the Central Limit Theorem, which states that the sampling distribution of the sample mean will be normally distributed regardless of the shape of the original population distribution as long as the sample size is sufficiently large. Choices B and C are incorrect because sampling distributions of means are not skewed. Choice D is incorrect because there is a predictable shape to the distribution, which is approximately normal.
4. What kind of relationship between a predictor and a dependent variable is indicated by a line that travels from the bottom-left of a graph to the upper-right of the graph?
- A. Positive
- B. Negative
- C. Exponential
- D. Logarithmic
Correct answer: A
Rationale: A line that travels from the bottom-left of a graph to the upper-right of the graph signifies a positive relationship between the predictor and dependent variable. This indicates that as the predictor variable increases, the dependent variable also increases. Choice B, 'Negative,' is incorrect as a negative relationship would be depicted by a line that travels from the top-left to the bottom-right of the graph. Choices C and D, 'Exponential' and 'Logarithmic,' respectively, represent specific types of relationships characterized by non-linear patterns, unlike the linear positive relationship shown in the described scenario.
5. What is the solution to 4 x 7 + (25 – 21)²?
- A. 512
- B. 36
- C. 44
- D. 22
Correct answer: C
Rationale: To find the solution, first solve the expression inside the parentheses: 25 - 21 = 4. Then, square the result from the parentheses: 4² = 16. Next, perform the multiplication: 4 x 7 = 28. Finally, add the results: 28 + 16 = 44. Therefore, the correct answer is 44. Choice A (512), Choice B (36), and Choice D (22) are incorrect as they do not follow the correct order of operations for solving the given mathematical expression.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access