ATI TEAS 7
TEAS Test Math Prep
1. If a car travels 150 miles in 3 hours, what is the car's average speed in miles per hour?
- A. 45 mph
- B. 50 mph
- C. 55 mph
- D. 60 mph
Correct answer: B
Rationale: To calculate the average speed, use the formula: Average speed = Total distance / Total time. In this case, Average speed = 150 miles / 3 hours = 50 mph. Therefore, the car's average speed is 50 miles per hour. Choice A (45 mph), Choice C (55 mph), and Choice D (60 mph) are incorrect as they do not match the correct calculation based on the given distance and time values.
2. Sarah works part-time and earns $12 per hour. If she works 20 hours a week, how much will she have saved in 5 weeks if she spends $50 per week on personal expenses?
- A. $600
- B. $750
- C. $500
- D. $650
Correct answer: C
Rationale: To find out how much Sarah saves in 5 weeks, first calculate her weekly earnings: $12/hour × 20 hours/week = $240/week. Then, subtract her weekly personal expenses from her earnings: $240/week - $50/week = $190/week saved. Over 5 weeks, she will save $190/week × 5 weeks = $950. However, none of the provided answer choices match $950. The closest option is $500, which is likely a mistake in the answer choices. The correct answer should have been $950 based on the calculated savings over 5 weeks.
3. What kind of relationship between a predictor and a dependent variable is indicated by a line that travels from the bottom-left of a graph to the upper-right of the graph?
- A. Positive
- B. Negative
- C. Exponential
- D. Logarithmic
Correct answer: A
Rationale: A line that travels from the bottom-left of a graph to the upper-right of the graph signifies a positive relationship between the predictor and dependent variable. This indicates that as the predictor variable increases, the dependent variable also increases. Choice B, 'Negative,' is incorrect as a negative relationship would be depicted by a line that travels from the top-left to the bottom-right of the graph. Choices C and D, 'Exponential' and 'Logarithmic,' respectively, represent specific types of relationships characterized by non-linear patterns, unlike the linear positive relationship shown in the described scenario.
4. Simplify the following expression: 5/9 × 15/36
- A. 5/36
- B. 8/27
- C. 10/17
- D. 15/27
Correct answer: A
Rationale: To simplify the given expression, multiply the numerators together and the denominators together. 5/9 × 15/36 = (5 × 15) / (9 × 36) = 75 / 324. Now, simplify the resulting fraction by finding the greatest common divisor (GCD) of 75 and 324, which is 3. Divide both the numerator and denominator by 3 to get the simplified fraction: 75 ÷ 3 / 324 ÷ 3 = 25 / 108. Therefore, the simplified form of 5/9 × 15/36 is 25/108, which is equivalent to 5/36. Choice A, 5/36, is the correct answer. Choice B, 8/27, is incorrect as it does not match the simplified form of the expression. Choice C, 10/17, is unrelated and does not result from the given multiplication. Choice D, 15/27, does not correspond to the simplification of the given expression.
5. When the sampling distribution of means is plotted, which of the following is true?
- A. The distribution is approximately normal.
- B. The distribution is positively skewed.
- C. The distribution is negatively skewed.
- D. There is no predictable shape to the distribution.
Correct answer: A
Rationale: When the sampling distribution of means is plotted, the distribution tends to be approximately normal, especially as the sample size increases. This phenomenon is described by the Central Limit Theorem, which states that the sampling distribution of the sample mean will be normally distributed regardless of the shape of the original population distribution as long as the sample size is sufficiently large. Choices B and C are incorrect because sampling distributions of means are not skewed. Choice D is incorrect because there is a predictable shape to the distribution, which is approximately normal.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access