ATI TEAS 7
ATI TEAS Math Practice Test
1. Joshua has to earn more than 92 points on a state test to qualify for a scholarship. Each question is worth 4 points, and the test has 30 questions. Which inequality can be solved to determine the number of questions Joshua must answer correctly?
- A. 4x < 30
- B. 4x < 92
- C. 4x > 30
- D. 4x > 92
Correct answer: D
Rationale: Joshua must answer more than 92 points' worth of questions. Since each question is worth 4 points, the inequality is 4x > 92. Choice A (4x < 30) is incorrect as it represents that Joshua must answer less than 30 questions correctly, not earning more than 92 points. Choice B (4x < 92) is incorrect as it signifies that Joshua must earn less than 92 points, which contradicts the requirement. Choice C (4x > 30) is incorrect as it implies that Joshua must answer more than 30 questions correctly, but the threshold is 92 points, not 30 points.
2. A mathematics test has a 4:2 ratio of data analysis problems to algebra problems. If the test has 18 algebra problems, how many data analysis problems are on the test?
- A. 24
- B. 28
- C. 36
- D. 38
Correct answer: C
Rationale: The ratio of 4:2 simplifies to 2:1. This means that for every 2 algebra problems, there is 1 data analysis problem. If there are 18 algebra problems, we can set up a proportion: 2 algebra problems correspond to 1 data analysis problem. Therefore, 18 algebra problems correspond to x data analysis problems. Solving the proportion, x = 18 * 1 / 2 = 9. Hence, there are 9 data analysis problems on the test. Therefore, the total number of data analysis problems on the test is 18 (algebra problems) + 9 (data analysis problems) = 27.
3. If Hannah spends at least $16 on 4 packages of coffee, which of the following inequalities represents the possible costs?
- A. 16 ≥ 4p
- B. 16 < 4p
- C. 16 > 4p
- D. 16 ≤ 4p
Correct answer: D
Rationale: To represent the relationship between the number of packages of coffee and the minimum cost, the inequality can be written as 4p ≥ 16 (cost is at least $16). This inequality can also be expressed as 16 ≤ 4p, which reads as the cost being less than or equal to $16. Therefore, the correct answer is D. Choice A (16 ≥ 4p) implies that the cost can be greater than or equal to $16, which does not align with the statement that Hannah spends at least $16. Choice B (16 < 4p) suggests that the cost is less than $16, which contradicts the given information. Choice C (16 > 4p) indicates that the cost is greater than $16, which is not accurate based on the scenario provided.
4. Simplify the following expression: (1/4) × (3/5) ÷ 1 (1/8)
- A. 8/15
- B. 27/160
- C. 2/15
- D. 27/40
Correct answer: C
Rationale: First, convert the mixed number 1 (1/8) into an improper fraction: 1 (1/8) = 9/8. Now, simplify the expression: (1/4) × (3/5) ÷ (9/8). To divide by a fraction, multiply by its reciprocal: (1/4) × (3/5) × (8/9) = 24/180 = 2/15. Thus, the simplified expression is 2/15. Choice A (8/15) is incorrect because the correct answer is 2/15. Choice B (27/160) is incorrect as it is not the result of the given expression. Choice D (27/40) is incorrect as it does not match the simplified expression obtained.
5. Solve for y: 2y + 5 = 25 * 10
- A. y = 25
- B. y = 100
- C. y = 150
- D. y = 200
Correct answer: B
Rationale: To solve the equation 2y + 5 = 25 * 10, start by simplifying the right side: 25 * 10 = 250. Then, subtract 5 from both sides to isolate 2y: 2y = 250 - 5 = 245. Finally, divide by 2 to find the value of y: y = 245 / 2 = 122.5. Therefore, the correct answer is y = 122.5. Choices A, C, and D are incorrect as they do not result from the correct calculation steps.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access