ati teas math practice test ATI TEAS Math Practice Test - Nursing Elites
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Math Practice Test

1. Simplify the following expression: (3)(-4) + (3)(4) - 1

Correct answer: A

Rationale: To solve the expression, first calculate the multiplication: (3)(-4) = -12 and (3)(4) = 12. Then, substitute the results back into the expression: (-12) + 12 - 1 = -1. Therefore, the correct answer is A. Choices B, C, and D are incorrect as they do not result from the correct calculations of the given expression.

2. Simplify the following expression: 13 - 3/22 - 11

Correct answer: B

Rationale: To simplify the expression, first find a common denominator for the fractions. 3/22 can be rewritten as 6/22. Now, the expression becomes 13/22 - 6/22 - 11. Subtracting 6/22 from 13/22 gives 7/22. Therefore, the correct answer is 7/22. Choice A, 19/22, is incorrect as the subtraction was not done properly. Choices C and D are incorrect as they are not part of the expression being simplified.

3. In a study measuring the average hours worked per week by different types of hospital staff (such as nurses and physicians), what are the dependent and independent variables?

Correct answer: D

Rationale: In this study, the dependent variable is the 'Average hours worked per week,' as it relies on the different types of 'Hospital Staff' (the independent variable). The amount of time worked per week varies based on the category of staff being considered. Therefore, the correct choice is D. Choices A and B incorrectly assign the dependent and independent variables to specific staff categories (Nurses and Physicians), which are actually different elements within the study. Choice C incorrectly defines the dependent variable as 'Hospital Staff,' when in fact, it is the 'Average hours worked per week' that is dependent on the type of staff.

4. The cost of renting a bicycle is $3.60 per hour. Which equation shows the best relationship between the total cost (C) and the number of hours (h) rented?

Correct answer: A

Rationale: The best relationship is C = 3.60h because the cost increases by $3.60 for each hour of rental. This equation represents a linear relationship where the total cost (C) is directly proportional to the number of hours rented (h). Choice B (C = h + 3.60) is incorrect because it wrongly assumes a fixed additional cost of $3.60 regardless of the number of hours rented. Choice C (C = 3.60h + 10.80) is incorrect as it overestimates the initial cost. Choice D (C = 10.80h) is incorrect as it implies a constant rate of $10.80 per hour, which is not the case.

5. Complete the following equation: 2 + (2)(2) - 2 ÷ 2 = ?

Correct answer: A

Rationale: To solve the equation, follow the order of operations (PEMDAS/BODMAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). 1. Calculate inside the parentheses first: (2)(2) = 4. 2. Then, perform multiplication and division: 2 + 4 - 1 = 6 - 1 = 5. Therefore, the correct answer is 5. Choice B (3) is incorrect because multiplication is done before subtraction. Choices C (2) and D (1) are incorrect as they do not follow the correct order of operations to solve the equation.

Similar Questions

A book has a width of 2.5 decimeters. What is the width of the book in centimeters?
Solve for x: 4(2x - 6) = 10x - 6
Simplify the following expression: (1/4) × (3/5) ÷ 1 (1/8)
Joshua has to earn more than 92 points on a state test to qualify for a scholarship. Each question is worth 4 points, and the test has 30 questions. Which inequality can be solved to determine the number of questions Joshua must answer correctly?
There are 80 mg in 0.8 mL of Acetaminophen Concentrated Infant Drops. If the proper dosage for a four-year-old child is 240 mg, how many milliliters should the child receive?
ATI TEAS 7 Exam Overview

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access