ATI TEAS 7
ATI TEAS Math Practice Test
1. There are 80 mg in 0.8 mL of Acetaminophen Concentrated Infant Drops. If the proper dosage for a four-year-old child is 240 mg, how many milliliters should the child receive?
- A. 0.8 mL
- B. 1.6 mL
- C. 2.4 mL
- D. 3.2 mL
Correct answer: C
Rationale: To find out how many milliliters the child should receive, divide the total required dosage of 240 mg by the concentration of the medication, which is 80 mg per 0.8 mL. 240 mg ÷ 80 mg/mL = 3 mL. Since each dose is 0.8 mL, the total dosage for the child would be 3 doses x 0.8 mL per dose = 2.4 mL. Therefore, the correct answer is 2.4 mL. Choice A (0.8 mL) is the concentration of the medication, not the total dose. Choices B (1.6 mL) and D (3.2 mL) are incorrect calculations that do not consider the concentration of the medication and the total required dosage correctly.
2. University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/5 of those who major in nursing complete the program. If this year’s incoming class has 100 students, how many will complete the nursing program?
- A. 75
- B. 20
- C. 15
- D. 5
Correct answer: C
Rationale: Out of the 100 students, 3/4 major in nursing, which equals 75 students. However, only 1/5 of these 75 students will complete the program. Calculating 1/5 of 75 gives us 15 students who will complete the nursing program. Therefore, the correct answer is 15. Choice A (75) is incorrect as it represents the total number of students majoring in nursing, not completing the program. Choices B (20) and D (5) are incorrect calculations and do not align with the information provided in the question.
3. If a train travels 60 miles per hour for 2 hours, how far does the train travel?
- A. 60 miles
- B. 100 miles
- C. 120 miles
- D. 200 miles
Correct answer: C
Rationale: To find the distance traveled by the train, we use the formula Distance = Speed x Time. Given that the train travels at 60 miles per hour for 2 hours, the calculation would be 60 miles/hour x 2 hours = 120 miles. Therefore, the correct answer is 120 miles. Choice A (60 miles) is incorrect because it only represents the speed of the train, not the total distance traveled. Choice B (100 miles) is incorrect as it does not account for the full 2 hours of travel. Choice D (200 miles) is incorrect as it overestimates the distance by multiplying the speed by the time incorrectly.
4. The cost of renting a bicycle is $3.60 per hour. Which equation shows the best relationship between the total cost (C) and the number of hours (h) rented?
- A. C = 3.60h
- B. C = h + 3.60
- C. C = 3.60h + 10.80
- D. C = 10.80h
Correct answer: A
Rationale: The best relationship is C = 3.60h because the cost increases by $3.60 for each hour of rental. This equation represents a linear relationship where the total cost (C) is directly proportional to the number of hours rented (h). Choice B (C = h + 3.60) is incorrect because it wrongly assumes a fixed additional cost of $3.60 regardless of the number of hours rented. Choice C (C = 3.60h + 10.80) is incorrect as it overestimates the initial cost. Choice D (C = 10.80h) is incorrect as it implies a constant rate of $10.80 per hour, which is not the case.
5. A patient was taking 310 mg of an antidepressant daily. The doctor reduced the dosage by 1/5, and then reduced it again by 20 mg. What is the patient’s final dosage?
- A. 20 mg
- B. 42 mg
- C. 228 mg
- D. 248 mg
Correct answer: C
Rationale: To calculate the final dosage, first find 1/5 of 310 mg, which is 62 mg, and subtract it from the original dosage. This gives 310 mg - 62 mg = 248 mg. Then, subtract an additional 20 mg from the result to get the final dosage: 248 mg - 20 mg = 228 mg. Therefore, the patient's final dosage is 228 mg. Choice A (20 mg) is incorrect because it only considers the second reduction of 20 mg and misses the initial reduction by 1/5. Choice B (42 mg) is incorrect as it miscalculates the reduction amounts. Choice D (248 mg) is incorrect as it does not account for the second reduction of 20 mg.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access