ATI TEAS 7
ATI TEAS Math Practice Test
1. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at an average speed of 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: D
Rationale: To find the total time, we first calculate the time taken for the first leg of the trip by dividing the distance of 305 miles by the speed of 65 mph, which equals 4.69 hours. After that, we add the 15 minutes spent at the gas station, which is 0.25 hours. Next, we calculate the time taken for the second leg of the trip by dividing the distance of 162 miles by the speed of 80 mph, which equals 2.03 hours. Adding these times together (4.69 hours + 0.25 hours + 2.03 hours) gives us a total time of 6.97 hours. Therefore, it will have been 6.97 hours since the driver began the trip. Choice A is incorrect as it does not account for the time spent driving the second leg of the trip. Choice B is incorrect as it only considers the time for the first leg of the trip and the time spent at the gas station. Choice C is incorrect as it misses the time taken for the second leg of the trip.
2. If Stella's current weight is 56 kilograms, which of the following is her approximate weight in pounds? (Note: 1 kilogram is approximately equal to 2.2 pounds.)
- A. 123 pounds
- B. 110 pounds
- C. 156 pounds
- D. 137 pounds
Correct answer: A
Rationale: To convert Stella's weight from kilograms to pounds, you multiply her weight in kilograms (56) by the conversion factor (2.2): 56 × 2.2 = 123.2 pounds. Since we need to find the approximate weight in pounds, the closest option is 123 pounds, making choice A the correct answer. Choices B, C, and D are incorrect because they do not reflect the accurate conversion of Stella's weight from kilograms to pounds.
3. University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/5 of those who major in nursing complete the program. If this year’s incoming class has 100 students, how many will complete the nursing program?
- A. 75
- B. 20
- C. 15
- D. 5
Correct answer: C
Rationale: Out of the 100 students, 3/4 major in nursing, which equals 75 students. However, only 1/5 of these 75 students will complete the program. Calculating 1/5 of 75 gives us 15 students who will complete the nursing program. Therefore, the correct answer is 15. Choice A (75) is incorrect as it represents the total number of students majoring in nursing, not completing the program. Choices B (20) and D (5) are incorrect calculations and do not align with the information provided in the question.
4. Simplify the following expression: (1/4) × (3/5) ÷ 1 (1/8)
- A. 8/15
- B. 27/160
- C. 2/15
- D. 27/40
Correct answer: C
Rationale: First, convert the mixed number 1 (1/8) into an improper fraction: 1 (1/8) = 9/8. Now, simplify the expression: (1/4) × (3/5) ÷ (9/8). To divide by a fraction, multiply by its reciprocal: (1/4) × (3/5) × (8/9) = 24/180 = 2/15. Thus, the simplified expression is 2/15. Choice A (8/15) is incorrect because the correct answer is 2/15. Choice B (27/160) is incorrect as it is not the result of the given expression. Choice D (27/40) is incorrect as it does not match the simplified expression obtained.
5. Solve for y: 2y + 5 = 25 * 10
- A. y = 25
- B. y = 100
- C. y = 150
- D. y = 200
Correct answer: B
Rationale: To solve the equation 2y + 5 = 25 * 10, start by simplifying the right side: 25 * 10 = 250. Then, subtract 5 from both sides to isolate 2y: 2y = 250 - 5 = 245. Finally, divide by 2 to find the value of y: y = 245 / 2 = 122.5. Therefore, the correct answer is y = 122.5. Choices A, C, and D are incorrect as they do not result from the correct calculation steps.
Similar Questions

Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access