ATI TEAS 7
TEAS Practice Test Math
1. A recipe calls for 5.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?
- A. 10.2 mL
- B. 12 mL
- C. 7.43 mL
- D. 27 mL
Correct answer: D
Rationale: To convert the amount of vanilla from teaspoons to milliliters, we multiply the number of teaspoons by the conversion factor of 4.93 mL/teaspoon. 5.5 teaspoons * 4.93 mL/teaspoon = 27.115 mL, which rounds to 27 mL. Therefore, the correct amount of vanilla in mL is 27 mL. Choice A (10.2 mL), Choice B (12 mL), and Choice C (7.43 mL) are incorrect as they do not correctly convert the given amount of teaspoons to milliliters based on the provided conversion factor.
2. Which of the following weights is equivalent to 3.193 kilograms?
- A. 3,193,000 grams
- B. 3,193 grams
- C. 319.3 grams
- D. 0.003193 grams
Correct answer: B
Rationale: To convert kilograms to grams, you need to remember that 1 kilogram is equal to 1,000 grams. Therefore, 3.193 kilograms is equivalent to 3,193 grams (3.193 kg * 1,000 g/kg = 3,193 g). Choice A (3,193,000 grams) incorrectly converts kilograms to milligrams, Choice C (319.3 grams) incorrectly moves the decimal point one place to the right, and Choice D (0.003193 grams) incorrectly converts kilograms to milligrams and then further to grams.
3. A homeowner has hired two people to mow his lawn. If person A is able to mow the lawn in 2 hours by herself and person B is able to mow the lawn in 3 hours by himself, what is the amount of time it would take for both person A and B to mow the lawn together?
- A. 5 hours
- B. 2.5 hours
- C. 1.2 hours
- D. 1 hour
Correct answer: C
Rationale: To find the combined work rate, you add the individual work rates: 1/2 + 1/3 = 5/6. This means that together, they can mow 5/6 of the lawn per hour. To determine how long it would take for both A and B to mow the entire lawn, you take the reciprocal of 5/6, which gives you 6/5 or 1.2 hours. Therefore, it would take 1.2 hours for person A and person B to mow the lawn together. Choice A (5 hours) is incorrect because it does not consider the combined efficiency of both workers. Choice B (2.5 hours) is incorrect as it does not reflect the correct calculation based on the combined work rates of the two individuals. Choice D (1 hour) is incorrect as it doesn't consider the fact that the combined rate is less than the individual rate of person A alone, thus taking longer than 1 hour.
4. What defines rational and irrational numbers?
- A. Any number that can be expressed as a fraction; any number that cannot be expressed as a fraction
- B. Any number that terminates or repeats; any number that does not terminate or repeat
- C. Any whole number; any decimal
- D. Any terminating decimal; any repeating decimal
Correct answer: A
Rationale: Rational numbers are those that can be written as a simple fraction, including whole numbers and decimals that either terminate or repeat. Irrational numbers, on the other hand, cannot be expressed as fractions. Choice B is incorrect because not all rational numbers necessarily terminate or repeat. Choice C is incorrect as it oversimplifies the concept of rational and irrational numbers by only considering whole numbers and decimals. Choice D is incorrect as it inaccurately defines rational and irrational numbers solely based on decimals terminating or repeating, excluding the broader category of fractions.
5. An athlete runs 5 miles in 25 minutes and then changes pace to run the next 3 miles in 15 minutes. Overall, what is the average time in minutes it takes the athlete to run 1 mile?
- A. 7 minutes
- B. 5 minutes
- C. 6.5 minutes
- D. 8.5 minutes
Correct answer: B
Rationale: To find the average time per mile, add the total time taken to cover all miles and then divide by the total miles run. The athlete ran 5 miles in 25 minutes and 3 miles in 15 minutes, totaling 8 miles in 40 minutes. Therefore, the average time per mile is 40 minutes ÷ 8 miles = 5 minutes. Choice A, 7 minutes, is incorrect as it does not reflect the correct average time per mile. Choice C, 6.5 minutes, is incorrect since the calculation is not based on the given information. Choice D, 8.5 minutes, is incorrect as it does not represent the average time per mile for the entire run.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access