ATI TEAS 7
TEAS Practice Test Math
1. A recipe calls for 5.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?
- A. 10.2 mL
- B. 12 mL
- C. 7.43 mL
- D. 27 mL
Correct answer: D
Rationale: To convert the amount of vanilla from teaspoons to milliliters, we multiply the number of teaspoons by the conversion factor of 4.93 mL/teaspoon. 5.5 teaspoons * 4.93 mL/teaspoon = 27.115 mL, which rounds to 27 mL. Therefore, the correct amount of vanilla in mL is 27 mL. Choice A (10.2 mL), Choice B (12 mL), and Choice C (7.43 mL) are incorrect as they do not correctly convert the given amount of teaspoons to milliliters based on the provided conversion factor.
2. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?
- A. 81 mg
- B. 270 mg
- C. 300 mg
- D. 351 mg
Correct answer: D
Rationale: To calculate a 30% increase from the current dosage of 270 mg, first find 30% of 270, which is 81 mg. Add this 81 mg increase to the original dosage of 270 mg to get the new dosage, which is 351 mg (270 mg + 81 mg = 351 mg). Therefore, the correct answer is 351 mg. Choice A (81 mg) is incorrect because this value represents only the calculated 30% increase, not the total dosage after the increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is close to the correct answer but does not consider the precise 30% increase calculation, leading to an incorrect total dosage.
3. If x represents the width of a rectangle and the length is six less than two times the width, which of the following expressions represents the length of the rectangle in terms of x?
- A. 2x-6
- B. 6-2x
- C. 6x-2
- D. 3x-4
Correct answer: A
Rationale: To find the expression representing the length of the rectangle in terms of x, we need to consider that the length is six less than two times the width. If we denote the width as x, the length can be expressed as 2x - 6. Therefore, the correct expression is 2x-6 (choice A). Choice B, 6-2x, represents the width subtracted from 6, not the length. Choice C, 6x-2, is not derived from the given information about the relationship between the width and length. Choice D, 3x-4, is not consistent with the relationship provided in the question.
4. The hypotenuse (side C) of a triangle is 13 inches long. Which of the following pairs of measurements could be correct for the lengths of the other two sides of the triangle? (Note: A² + B² = C²)
- A. 5 inches, 12 inches
- B. 2.5 inches, 6 inches
- C. 2.5 inches, 4 inches
- D. 5 inches, 8 inches
Correct answer: A
Rationale: The correct answer is A. Using the Pythagorean theorem (A² + B² = C²), we substitute the values: 5² + 12² = 13². This simplifies to 25 + 144 = 169, which is true. Therefore, 5 inches and 12 inches could be the lengths of the other two sides. Choices B, C, and D do not satisfy the Pythagorean theorem, making them incorrect options.
5. A couple dining at a restaurant receives a bill for $58.60. They wish to leave a 16% gratuity. Which of the following is the estimated gratuity?
- A. $8.48
- B. $6.40
- C. $9.38
- D. $7.00
Correct answer: C
Rationale: To calculate a 16% gratuity on a bill of $58.60, you multiply $58.60 by 0.16, which equals $9.376. Rounding this to the nearest cent gives $9.38. Therefore, the estimated gratuity is $9.38. Choice A is incorrect as it does not accurately reflect the calculated amount. Choice B is also incorrect as it does not match the correct calculation. Choice D is incorrect as it is not the nearest estimated value to the calculated amount.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access