ATI TEAS 7
TEAS Practice Math Test
1. Simplify the following expression: (2/7) ÷ (5/6)
- A. 2/5
- B. 35/15
- C. 5/21
- D. 12/35
Correct answer: D
Rationale: To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. In this case, (2/7) ÷ (5/6) becomes (2/7) × (6/5) = 12/35. Therefore, the correct answer is 12/35. Choice A (2/5), choice B (35/15), and choice C (5/21) are incorrect because they do not correctly simplify the given expression.
2. Using the chart below, which equation describes the relationship between x and y?
- A. x = 3y
- B. y = 3x
- C. y = 1/3x
- D. x/y = 3
Correct answer: B
Rationale: The correct equation that describes the relationship between x and y based on the chart is y = 3x. This is because each y-value in the chart is 3 times the x-value. Choice A (x = 3y) is incorrect as it implies x is 3 times y, which is the opposite of the relationship shown in the chart. Choice C (y = 1/3x) is incorrect since the relationship in the chart indicates y is 3 times x, not a third of x. Choice D (x/y = 3) is incorrect as it represents a ratio between x and y equal to 3, which is not in line with the relationship depicted in the chart.
3. A rectangular solid box has a square base with a side length of 5 feet and a height of h feet. If the volume of the box is 200 cubic feet, which of the following equations can be used to find h?
- A. 5h = 200
- B. 5h² = 200
- C. 25h = 200
- D. h = 200 ÷ 5
Correct answer: C
Rationale: The volume formula for a rectangular solid is V = l × w × h. In this case, the length and width are both 5 feet. Substituting the values into the formula gives V = 5 × 5 × h = 25h = 200. Therefore, h = 200 ÷ 25 = 8. Option A is incorrect because the product of length, width, and height is not directly equal to the volume. Option B is incorrect as squaring the height is not part of the volume formula. Option D is incorrect as it oversimplifies the relationship between height and volume, not considering the base dimensions.
4. Jerry needs to load four pieces of equipment onto a factory elevator that has a weight limit of 800 pounds. Jerry weighs 200 pounds. What would be the average weight of each item so that the elevator's weight limit is not exceeded?
- A. 128 pounds
- B. 150 pounds
- C. 175 pounds
- D. 180 pounds
Correct answer: B
Rationale: To find the average weight per item, subtract Jerry's weight from the elevator's weight limit: 800 - 200 = 600 pounds. Since there are 4 items, divide 600 by 4 to determine that each item should weigh 150 pounds. Choice A (128 pounds), C (175 pounds), and D (180 pounds) are incorrect as they do not correctly calculate the average weight per item to ensure the elevator's weight limit is not exceeded.
5. Solve for x: 2x - 7 = 3
- A. x = 4
- B. x = 3
- C. x = -2
- D. x = 5
Correct answer: D
Rationale: To solve the equation for x, follow these steps: 2x - 7 = 3. Add 7 to both sides to isolate 2x, resulting in 2x = 10. Then, divide by 2 on both sides to find x, which gives x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not accurately solve the equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access