ATI TEAS 7
TEAS Practice Math Test
1. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?
- A. 10 °C
- B. 13 °C
- C. 15 °C
- D. 35 °C
Correct answer: B
Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.
2. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
3. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
4. Which of the following is listed in order from least to greatest?
- A. -2 3/4, -2 7/8, -1/5, 2/5, 1/8
- B. -1/5, 1/8, 2/5, -2 3/4, -2 7/8
- C. -2 7/8, -2 3/4, -1/5, 1/8, 2/5
- D. 1/8, 2/5, -1/5, -2 7/8, -2 3/4
Correct answer: C
Rationale: To determine the order from least to greatest, we can convert all fractions and mixed numbers to decimals or use a least common denominator. Converting the fractions in Choice C to decimals, we get -2.875, -2.75, -0.2, 0.125, and 0.4 when reading from left to right. Negative integers with larger absolute values are less than negative integers with smaller absolute values. Therefore, the correct answer is Choice C. Choices A, B, and D are incorrect because they do not present the numbers in the correct order from least to greatest when converted to decimals or compared using common denominators.
5. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 30 cm². What is the actual area of the room?
- A. 30,000 cm²
- B. 300 m²
- C. 3,000 m²
- D. 30 m²
Correct answer: D
Rationale: On a 1:100 scale drawing, each centimeter represents one meter. The area of the room in the scale drawing is 30 cm², which means the actual area is 30 m². Choice A (30,000 cm²) is incorrect as it doesn't account for the scale conversion. Choice B (300 m²) is incorrect because it multiplies the scale area directly by 10,000, which is not the correct conversion. Choice C (3,000 m²) is also incorrect as it applies the scale factor incorrectly.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access