ATI TEAS 7
TEAS Test Practice Math
1. To begin making her soup, Jennifer added four containers of chicken broth with 1 liter of water into the pot. Each container of chicken broth contains 410 milliliters. How much liquid is in the pot?
- A. 1.64 liters
- B. 2.64 liters
- C. 5.44 liters
- D. 6.12 liters
Correct answer: B
Rationale: Each container of chicken broth contains 410 milliliters. Jennifer added four containers, which totals 4 * 410 = 1640 milliliters of chicken broth. She then added 1 liter of water, equivalent to 1000 milliliters. Combining all the liquids, we get 1640 + 1000 = 2640 milliliters, which equals 2.64 liters. Choice A is incorrect because it miscalculates the total liquid volume. Choice C is incorrect as it greatly overestimates the liquid amount. Choice D is incorrect as it also overestimates the liquid content in the pot.
2. Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36
- A. 5
- B. 4
- C. 7
- D. 3
Correct answer: C
Rationale: To determine how many prizes should be awarded to 5th-grade students, we need to set up the proportion of the number of 5th-grade students to the total number of students in the school. The total number of students is 35 + 38 + 38 + 33 + 36 = 180 students. To find the proportion of 5th-grade students, it would be 36/180 = 0.2. Since there are 20 prizes to be awarded, multiplying 0.2 by 20 gives us 4, which means 4 prizes should go to the 5th-grade students. Therefore, the correct answer is 4. Choice A (5) is incorrect as it does not align with the proportional distribution. Choice B (4) is the correct answer, as calculated. Choice C (7) is incorrect as it exceeds the total number of prizes available. Choice D (3) is incorrect as it does not match the proportional distribution based on the number of students.
3. What is the simplest way to write the following expression? 5x - 2y + 4x + y
- A. 9x - y
- B. 9x - 3y
- C. 9x + 3y
- D. x; y
Correct answer: A
Rationale: To simplify the given expression 5x - 2y + 4x + y, we combine like terms. Grouping the x terms together and the y terms together, we have 5x + 4x - 2y + y. Combining like terms results in 9x - y. Therefore, the simplest form of the expression is 9x - y, which corresponds to option A. Option B is incorrect because it incorrectly subtracts 3y instead of just y. Option C is incorrect because it adds 3y instead of subtracting y. Option D is incorrect as it separates x and y with a semicolon instead of an operation, providing no simplified expression.
4. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of those 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: C
Rationale: Out of all the patients who took the antibiotic, 30% developed an infection. Among those with infections, 5% required hospitalization. To find the percentage of all patients hospitalized, we multiply the two percentages: 30% * 5% = 1.5%. Therefore, 1.5% of all patients were hospitalized. Choice A (1.50%) is the calculated percentage of all patients hospitalized, not 1.50%. Choice B (5%) is the percentage of patients who developed an infection and required hospitalization, not all patients. Choice D (30%) represents the initial percentage of patients who developed an infection, not the percentage hospitalized.
5. If 35% of a paycheck is deducted for taxes and 4% for insurance, what is the total percent taken out of the paycheck?
- A. 20%
- B. 31%
- C. 39%
- D. 42%
Correct answer: C
Rationale: When 35% is deducted for taxes and 4% for insurance, the total percentage taken out of the paycheck is 35% + 4% = 39%. Therefore, the correct answer is 39%, which corresponds to option C. Option A (20%) is incorrect because it does not account for the total deductions. Option B (31%) is incorrect as it does not sum up the percentages correctly. Option D (42%) is incorrect as it overestimates the total deductions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access