ATI TEAS 7
TEAS Practice Test Math
1. Which of the following is the greatest value?
- A. 43 ÷ 55
- B. 7 ÷ 5
- C. 0.729
- D. 73%
Correct answer: B
Rationale: To determine the greatest value among the choices, you need to convert all options to a common format. In this case, converting fractions to decimals will help compare them. When 7 ÷ 5 is calculated, it equals 1.4, which is greater than 0.729 (choice C) and 0.78 (choice A when rounded). The percentage 73% (choice D) is equivalent to 0.73, making 7 ÷ 5 the largest value. Therefore, the correct answer is B. Choice A is smaller than B, as 43 ÷ 55 equals approximately 0.78. Choice C is smaller than B, as 0.729 is less than 1.4. Choice D is smaller than B, as 73% is equal to 0.73, which is less than 1.4.
2. A teacher asked all the students in the class which days of the week they get up after 8 a.m. Which of the following is the best way to display the frequency for each day of the week?
- A. Histogram
- B. Pie chart
- C. Bar graph
- D. Scatter plot
Correct answer: A
Rationale: A histogram is the best way to display the frequency for each day of the week in this scenario. Histograms are ideal for showing the distribution of numerical data by dividing it into intervals and representing the frequency of each interval with bars. In this case, each day of the week can be represented as a category with the frequency of students getting up after 8 a.m. displayed on the vertical axis. Choice B, a pie chart, would not be suitable for this scenario as it is more appropriate for showing parts of a whole, not frequency distributions. Choice C, a bar graph, could potentially work but is more commonly used to compare different categories rather than displaying frequency distribution data. Choice D, a scatter plot, is used to show the relationship between two variables and is not the best choice for displaying frequency for each day of the week.
3. If m represents a car’s average mileage in miles per gallon, p represents the price of gas in dollars per gallon, and d represents a distance in miles, which of the following algebraic equations represents the cost, c, of gas per mile?
- A. c = dp/m
- B. c = p/m
- C. c = mp/d
- D. c = m/p
Correct answer: B
Rationale: The cost of gas per mile, c, is calculated by dividing the price of gas, represented by p, by the car's average mileage, represented by m. Therefore, the correct equation is c = p/m. Choice A (dp/m) incorrectly multiplies the price of gas and distance, while choice C (mp/d) incorrectly multiplies the average mileage and price of gas. Choice D (m/p) incorrectly divides the average mileage by the price of gas, which does not represent the cost of gas per mile.
4. What is the simplified form of the expression (x^2 + 2x)/(x)?
- A. x + 2
- B. x^2 + 2
- C. x(x + 2)
- D. 1 + 2/x
Correct answer: A
Rationale: To simplify the expression (x^2 + 2x)/(x), we factor out x from the numerator to get x(x + 2) and then cancel the x in the denominator. This simplifies to x + 2, making choice A the correct answer. Choice B (x^2 + 2) is incorrect as it does not account for the division by x. Choice C (x(x + 2)) is also incorrect as it represents the factored form before cancellation. Choice D (1 + 2/x) is incorrect as it does not simplify the expression correctly.
5. A study was conducted where patients were divided into three groups: 1/2 in Group Alpha, 1/3 in Group Beta, and 1/6 in Group Gamma. Which group is the smallest?
- A. Group Alpha
- B. Group Beta
- C. Group Gamma
- D. Group Gamma
Correct answer: C
Rationale: The smallest group is Group Gamma, which had 1/6 of the total number of patients. To determine the smallest group, compare the fractions representing the portions of patients in each group. 1/6 is smaller than 1/3 and 1/2, making Group Gamma the smallest. Group Alpha and Group Beta have larger fractions of patients, making them larger groups compared to Group Gamma.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access