ATI TEAS 7
TEAS Practice Math Test
1. Solve for x: 3(x - 1) = 2(3x - 9)
- A. x = 2
- B. x = 8/3
- C. x = -5
- D. x = 5
Correct answer: D
Rationale: To solve the equation 3(x - 1) = 2(3x - 9), first distribute and simplify both sides to get 3x - 3 = 6x - 18. Next, subtract 3x from both sides to get -3 = 3x - 18. Then, add 18 to both sides to obtain 15 = 3x. Finally, divide by 3 to find x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not represent the correct solution to the given equation after proper algebraic manipulation.
2. Gordon purchased a television when his local electronics store had a sale. The television was offered at 30% off its original price of $472. What was the sale price Gordon paid?
- A. $141.60
- B. $225.70
- C. $305.30
- D. $330.40
Correct answer: D
Rationale: To find the sale price after a 30% discount, you need to subtract 30% of the original price from the original price. 30% of $472 is $141.60. Subtracting this discount from the original price gives $472 - $141.60 = $330.40, which is the sale price Gordon paid. Choice A, $141.60, is incorrect as it represents only the discount amount, not the final sale price. Choices B and C are also incorrect as they do not account for the correct calculations of the discount and final sale price.
3. What is the volume of a cube with a side length of 3 cm?
- A. 9 cm³
- B. 27 cm³
- C. 18 cm³
- D. 12 cm³
Correct answer: B
Rationale: To find the volume of a cube, you cube the length of one side. In this case, the side length is 3 cm, so the volume is calculated as 3 cm * 3 cm * 3 cm = 27 cm³. Therefore, the correct answer is 27 cm³. Choice A (9 cm³), Choice C (18 cm³), and Choice D (12 cm³) are incorrect as they do not correctly calculate the volume of a cube with a side length of 3 cm.
4. Express as an improper fraction: 8 3/7
- A. 11/7
- B. 21/8
- C. 5/3
- D. 59/7
Correct answer: D
Rationale: To convert the mixed number 8 3/7 to an improper fraction, multiply the whole number (8) by the denominator (7) and add the numerator (3) to get the numerator of the improper fraction. This gives us (8*7 + 3) / 7 = 59/7. Therefore, the correct answer is 59/7. Choice A (11/7), choice B (21/8), and choice C (5/3) are incorrect because they do not correctly convert the mixed number to an improper fraction.
5. Solve the following equation: 3(2y+50)−4y=500
- A. y = 125
- B. y = 175
- C. y = 150
- D. y = 200
Correct answer: B
Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𑦠+ 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access