ATI TEAS 7
TEAS Math Practice Test
1. If ๐ = 8, then n is between which of the following ranges?
- A. 5 and 7
- B. 7 and 9
- C. 9 and 11
- D. 3 and 5
Correct answer: B
Rationale: To find the range where n lies when n = 8, we consider numbers greater and lesser than 8. The range would be between 7 and 9, not 9 and 11 as stated in the original rationale. Option A (5 and 7) and Option D (3 and 5) are lower ranges, while Option C (9 and 11) exceeds the upper limit.
2. A taxi service charges $50 for the first mile, $50 for each additional mile, and 20ยข per minute of waiting time. Joan took a cab from her place to a flower shop 8 miles away, where she bought a bouquet, then another 6 miles to her mother's place. The driver had to wait 9 minutes while she bought the bouquet. What was the fare?
- A. $650
- B. $710
- C. $701.80
- D. $650
Correct answer: C
Rationale: To calculate the fare, first, determine the cost for the distance traveled. Joan traveled a total of 14 miles (8 miles to the flower shop + 6 miles to her mother's place). The first mile costs $50, and the remaining 13 miles cost $50 each, totaling $700 for the distance. Additionally, the driver waited for 9 minutes, which incurs an additional cost of $1.80 (9 minutes x $0.20 per minute). Therefore, the total fare is calculated as: Cost for distance + Cost for waiting time = $50 + $650 + $1.80 = $701.80. Choice A, $650, is incorrect as it does not consider the waiting time cost. Choice B, $710, is incorrect as it does not accurately calculate the total fare. Choice D, $650, is incorrect for the same reason as Choice A. The correct total fare is $701.80.
3. How is the number -4 classified?
- A. Real, rational, integer, whole, natural
- B. Real, rational, integer, natural
- C. Real, rational, integer
- D. Real, irrational
Correct answer: C
Rationale: The number -4 is classified as a real number because it exists on the number line. It is also a rational number since it can be expressed as -4/1. Additionally, -4 is an integer because it is a whole number that can be positive, negative, or zero. However, -4 is not a whole number because whole numbers are non-negative integers starting from zero. Similarly, -4 is not a natural number since natural numbers are positive integers starting from one. Therefore, the correct classification for the number -4 is real, rational, and integer, making option C the correct answer.
4. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?
- A. 30
- B. 45
- C. 36
- D. 40
Correct answer: A
Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours โ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.
5. Which of the following describes a real-world situation that could be modeled by?
- A. Courtney charges a $12 fee plus $2 per hour to babysit. Kendra charges a $10 fee plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
- B. Courtney charges a $2 fee plus $12 per hour to babysit. Kendra charges a $5 fee plus $10 per hour. Write an equation to find the number of hours for which the two charges are equal.
- C. Courtney charges a $12 fee plus $2 to babysit. Kendra charges a $10 fee plus $5 to babysit. Write an equation to find the number of hours for which the two charges are equal.
- D. Courtney charges $10 plus $2 per hour to babysit. Kendra charges $12 plus $5 per hour. Write an equation to find the number of hours for which the two charges are equal.
Correct answer: A
Rationale: In the given situation, Courtney charges a $12 fee plus $2 per hour to babysit, represented by the equation: 12 + 2h where h is the number of hours. Kendra charges a $10 fee plus $5 per hour, represented by the equation: 10 + 5h. To find the number of hours for which the two charges are equal, we set the two equations equal to each other: 12 + 2h = 10 + 5h. Solving for h gives h = 2. This means that the charges are equal after 2 hours of babysitting. Choice B is incorrect because the fee and hourly rates for Courtney and Kendra are reversed, leading to an incorrect equation. Choices C and D are incorrect as they do not accurately represent the given scenario of fees and hourly rates for babysitting by Courtney and Kendra.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access