ATI TEAS 7
TEAS Practice Math Test
1. Which of the following describes a proportional relationship?
- A. Johnathan opens a savings account with an initial deposit of $150 and deposits $125 per month
- B. Bruce pays his employees $12 per hour worked during the month of December, as well as a $250 bonus
- C. Alvin pays $28 per month for his phone service plus $0.07 for each long-distance minute used
- D. Kevin drives 65 miles per hour
Correct answer: A
Rationale: A proportional relationship is one in which two quantities vary directly with each other. In choice A, the amount deposited per month is directly proportional to the initial deposit. The relationship can be represented as y = 125x + 150, where x is the number of months and y is the total amount in the account. Choices B and C involve additional fixed amounts or variable costs that do not maintain a constant ratio, making them non-proportional relationships. Choice D refers to a constant speed of driving, which is not a proportional relationship as it does not involve varying quantities that change in direct proportion.
2. Sally wants to buy a used truck for her delivery business. Truck A is priced at $450 and gets 25 miles per gallon. Truck B costs $650 and gets 35 miles per gallon. If gasoline costs $4 per gallon, how many miles must Sally drive to make truck B the better buy?
- A. 500
- B. 7500
- C. 1750
- D. 4375
Correct answer: D
Rationale: To determine the breakeven point where Truck B becomes the better buy, we need to compare the total costs for both trucks. For Truck A: Total cost = $450 + (miles / 25) * $4. For Truck B: Total cost = $650 + (miles / 35) * $4. To find the point where Truck B is the better buy, set the two total cost equations equal to each other and solve for miles. By solving this equation, we find that Sally must drive 4375 miles for Truck B to be the better buy. Choice A (500) is too low, Choice B (7500) is too high, and Choice C (1750) does not represent the breakeven point where Truck B becomes more cost-effective.
3. After a hurricane struck a Pacific island, donations began flooding into a disaster relief organization. The organization provided four options for donors. What percentage of the funds was donated to support construction costs?
- A. 49%
- B. 23%
- C. 18%
- D. 10%
Correct answer: B
Rationale: The correct answer is B (23%). The information was obtained from the pie chart which indicated that 23% of the funds were allocated to support construction costs. Choice A (49%), Choice C (18%), and Choice D (10%) are incorrect as they do not reflect the accurate percentage designated for construction costs according to the data provided.
4. Arrange the following fractions from least to greatest: 2/3, 1/2, 5/8, 7/9.
- A. 7/9, 5/8, 2/3, 1/2
- B. 1/2, 2/3, 5/8, 7/9
- C. 1/2, 5/8, 2/3, 7/9
- D. 7/9, 2/3, 5/8, 1/2
Correct answer: C
Rationale: To compare the fractions, it is beneficial to convert them to decimals or find a common denominator. When converted to decimals: 1/2 = 0.50, 5/8 = 0.625, 2/3 ≈ 0.666, and 7/9 ≈ 0.778. Therefore, the correct order from least to greatest is 1/2, 5/8, 2/3, 7/9. Choice A is incorrect because it places 7/9 first, which is the greatest fraction. Choice B is incorrect as it incorrectly lists the fractions. Choice D is incorrect as it starts with 7/9, which is the largest fraction instead of the smallest.
5. Robert plans to drive 1,800 miles. His car gets 30 miles per gallon, and his tank holds 12 gallons. How many tanks of gas will he need for the trip?
- A. 4 tanks
- B. 5 tanks
- C. 6 tanks
- D. 7 tanks
Correct answer: B
Rationale: To calculate how many gallons of gas Robert needs for the 1,800-mile trip, divide the total distance by the car's mileage per gallon: 1,800 miles ÷ 30 mpg = 60 gallons. Since his tank holds 12 gallons, Robert will need 60 gallons ÷ 12 gallons per tank = 5 tanks of gas for the trip. Choice A (4 tanks), Choice C (6 tanks), and Choice D (7 tanks) are incorrect as they do not correctly calculate the number of tanks needed based on the car's mileage and tank capacity.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access