which of the following describes a proportional relationship
Logo

Nursing Elites

ATI TEAS 7

TEAS Practice Math Test

1. Which of the following describes a proportional relationship?

Correct answer: A

Rationale: A proportional relationship is one in which two quantities vary directly with each other. In choice A, the amount deposited per month is directly proportional to the initial deposit. The relationship can be represented as y = 125x + 150, where x is the number of months and y is the total amount in the account. Choices B and C involve additional fixed amounts or variable costs that do not maintain a constant ratio, making them non-proportional relationships. Choice D refers to a constant speed of driving, which is not a proportional relationship as it does not involve varying quantities that change in direct proportion.

2. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 50 cm². What is the actual area of the room?

Correct answer: D

Rationale: The scale of 1:100 means that 1 cm² on the floor plan represents 100 cm² in real life. To find the actual area of the room, you need to multiply the area on the floor plan by the square of the scale factor. Since the scale is 1:100, the scale factor is 100. Therefore, 50 cm² on the floor plan represents 50 * 100 = 5000 cm² in real life. Choice A (500 m²) is incorrect as it converts the area from cm² to m² without considering the scale factor. Choice B (50 m²) is incorrect as it does not account for the scale factor. Choice C (5000 cm²) is incorrect as it gives the area on the floor plan, not the actual area.

3. What is a common denominator?

Correct answer: A

Rationale: A common denominator is a shared multiple of the denominators in a set of fractions. It is necessary when adding or subtracting fractions to have a common denominator to ensure that the fractions can be combined accurately. Choice B is incorrect because the common denominator is related to the denominators, not the numerators. Choice C is incorrect because while the common denominator is the same in all fractions being added or subtracted, it is not necessarily a number that is the same in all fractions. Choice D is incorrect because a common denominator is a multiple of the denominators, not a number that divides evenly into both fractions.

4. What defines a composite number?

Correct answer: C

Rationale: A composite number is a positive integer greater than one that has more than two factors. Choice A is incorrect because a number with only two factors is a prime number. Choice B is incorrect as being a fraction does not define a composite number. Choice D is incorrect because a number with exactly two factors is a prime number, not a composite number.

5. Simplify (x^2 - y^2) / (x - y)

Correct answer: A

Rationale: The expression 𝑥^2 - 𝑦^2 is a difference of squares, which follows the identity: 𝑥^2 - 𝑦^2 = (𝑥 + 𝑦)(𝑥 - 𝑦). Therefore, the given expression becomes: (𝑥^2 - 𝑦^2) / (𝑥 - 𝑦) = (𝑥 + 𝑦)(𝑥 - 𝑦) / (𝑥 - 𝑦). Since (𝑥 - 𝑦) appears in both the numerator and the denominator, they cancel each other out, leaving 𝑥 + 𝑦. Thus, the simplified form of (𝑥^2 - 𝑦^2) / (𝑥 - 𝑦) is 𝑥 + 𝑦. Therefore, the correct answer is A (x + y). Option B (x - y) is incorrect as it does not result from simplifying the given expression. Option C (1) is incorrect as it does not account for the variables x and y present in the expression. Option D ((x + y)/(x - y)) is incorrect as it presents the simplified form in a different format than the correct answer.

Similar Questions

If , then
How do you convert yards to feet, and feet to yards?
A patient requires a 30% decrease in their medication dosage. Their current dosage is 340 mg. What will their dosage be after the decrease?
Solve for x: x + 5 = x - 3.
If 9.5% of a town's population of 51,623 people voted for a proposition, approximately how many people voted for the proposition?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses