ATI TEAS 7
TEAS Exam Math Practice
1. What is the perimeter of a rectangle with a length of 12 cm and a width of 5 cm?
- A. 17 cm
- B. 24 cm
- C. 34 cm
- D. 40 cm
Correct answer: C
Rationale: The correct formula for the perimeter of a rectangle is P = 2(l + w), where l represents the length and w represents the width. Substituting the given values into the formula: P = 2(12 cm + 5 cm) = 2(17 cm) = 34 cm. Therefore, the perimeter of the rectangle is 34 cm. Choice A (17 cm) is incorrect as it seems to have added only the length and width without multiplying by 2. Choice B (24 cm) is incorrect as it does not consider the multiplication by 2. Choice D (40 cm) is incorrect as it seems to have added the length and width without multiplying by 2.
2. How do you find the radius of a circle when given the diameter? How do you find the radius of a circle when given the circumference?
- A. Radius = Diameter ÷ 2; Radius = Circumference ÷ 2π
- B. Radius = Diameter ÷ 3; Radius = Circumference ÷ π
- C. Radius = Diameter × 2; Radius = Circumference × 2π
- D. Radius = Diameter ÷ 4; Radius = Circumference ÷ π
Correct answer: A
Rationale: The correct way to find the radius of a circle when given the diameter is by dividing the diameter by 2 to get the radius (Radius = Diameter ÷ 2). When given the circumference, you need to divide the circumference by 2π to find the radius (Radius = Circumference ÷ 2π). Choice A provides the accurate formulas for finding the radius in both scenarios. Choices B, C, and D present incorrect formulas that do not align with the correct calculations for determining the radius of a circle based on the given information.
3. A taxi service charges $50 for the first mile, $50 for each additional mile, and 20¢ per minute of waiting time. Joan took a cab from her place to a flower shop 8 miles away, where she bought a bouquet, then another 6 miles to her mother's place. The driver had to wait 9 minutes while she bought the bouquet. What was the fare?
- A. $650
- B. $710
- C. $701.80
- D. $650
Correct answer: C
Rationale: To calculate the fare, first, determine the cost for the distance traveled. Joan traveled a total of 14 miles (8 miles to the flower shop + 6 miles to her mother's place). The first mile costs $50, and the remaining 13 miles cost $50 each, totaling $700 for the distance. Additionally, the driver waited for 9 minutes, which incurs an additional cost of $1.80 (9 minutes x $0.20 per minute). Therefore, the total fare is calculated as: Cost for distance + Cost for waiting time = $50 + $650 + $1.80 = $701.80. Choice A, $650, is incorrect as it does not consider the waiting time cost. Choice B, $710, is incorrect as it does not accurately calculate the total fare. Choice D, $650, is incorrect for the same reason as Choice A. The correct total fare is $701.80.
4. What is the approximate metric equivalent of 7 inches?
- A. 3.2 cm
- B. 2.8 cm
- C. 15.4 cm
- D. 17.8 cm
Correct answer: D
Rationale: The correct answer is D: 17.8 cm. To convert inches to centimeters, you can use the conversion factor 1 inch = 2.54 cm. Therefore, 7 inches is equal to 7 * 2.54 = 17.78 cm, which rounds to 17.8 cm. Choices A, B, and C are incorrect because they do not correspond to the correct conversion of 7 inches to centimeters.
5. A leather recliner is on sale for 30% less than its original price. A consumer has a coupon that saves an additional 25% off of the sale price. If the consumer pays $237 for the recliner, what is the original price of the recliner to the nearest dollar?
- A. $316
- B. $431
- C. $451
- D. $527
Correct answer: D
Rationale: To find the original price of the recliner, you need to reverse calculate. Let x be the original price. The sale price is 70% of the original price, and after the additional 25% coupon discount, the consumer pays $237. Setting up the equation: x × 0.70 × 0.75 = 237. Solving this equation, x ≈ $527. Therefore, the original price of the recliner was approximately $527. Choices A, B, and C are incorrect as they do not align with the correct calculation based on the given discounts.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access