ATI TEAS 7
TEAS Exam Math Practice
1. After taxes, a worker earned $15,036 in 7 months. What is the amount the worker earned in 2 months?
- A. $2,148
- B. $4,296
- C. $6,444
- D. $8,592
Correct answer: B
Rationale: To find the amount earned in 2 months, set up a proportion using two ratios relating amount earned to months: (15,036/7) = (x /2). Cross-multiply and solve for x: 7x = 30,072, x = 4,296. Therefore, the worker earned $4,296 in 2 months. Choice A, $2,148, is incorrect as it is half of the correct answer. Choices C and D, $6,444 and $8,592, are incorrect as they do not correspond to the calculated proportion.
2. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
3. What is the domain for the function y = 1/x?
- A. All real numbers except 0
- B. x > 0
- C. x = 0
- D. x = 1
Correct answer: A
Rationale: The domain of a function consists of all possible input values that produce a valid output. In the case of y = 1/x, the function is undefined when x = 0 because division by zero is not defined in mathematics. Therefore, the correct domain for y = 1/x is all real numbers except 0 (Choice A). Choice B, x > 0, is incorrect because it excludes the value x = 0. Choice C, x = 0, is also incorrect as x = 0 is not a valid part of the domain due to the function being undefined at this point. Choice D, x = 1, is unrelated to the domain of the function and does not represent the set of valid input values for y = 1/x.
4. How many kilometers is 4382 feet?
- A. 1.336 kilometers
- B. 14.376 kilometers
- C. 1.437 kilometers
- D. 13.336 kilometers
Correct answer: A
Rationale: To convert feet to kilometers, you need to divide the number of feet by 3280.84 (the number of feet in a kilometer). Therefore, 4382 feet is equal to 4382/3280.84 ≈ 1.336 kilometers. Choice B, 14.376 kilometers, is incorrect as it seems to be a miscalculation. Choice C, 1.437 kilometers, is also incorrect, as it is slightly off from the correct conversion. Choice D, 13.336 kilometers, is significantly higher than the correct answer and does not align with the conversion factor.
5. Your measurement of the width of a door is 36 inches. The actual width of the door is 35.75 inches. What is the relative error in your measurement?
- A. 0.70%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: To calculate relative error, you use the formula: (|measured value - actual value| / actual value) * 100%. Substituting the values, we get (|36 - 35.75| / 35.75) * 100% = (0.25 / 35.75) * 100% = 0.7%. This means your measurement is off by 0.7% from the actual width of the door. Choice B, 0.01%, is too small as it doesn't reflect the actual difference. Choices C and D are significantly different from the calculated answer and do not represent the accurate relative error in the measurement.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access