ATI TEAS 7
TEAS Test Practice Math
1. Veronica paid an additional $3,015 for a surround sound system and $5,218 for a maintenance package. What was the total price of her new car?
- A. $50,210
- B. $48,443
- C. $43,225
- D. $40,210
Correct answer: B
Rationale: To calculate the total price of Veronica's new car, you must sum the original price of the car with the additional costs. Veronica paid $3,015 for the surround sound system and $5,218 for the maintenance package, totaling $3,015 + $5,218 = $8,233 in additional costs. Adding this to the original price of the car, $40,210, gives $40,210 + $8,233 = $48,443. Therefore, the total price of Veronica's new car is $48,443. Choice A, $50,210, is incorrect as it does not factor in the correct additional costs. Choice C, $43,225, is incorrect because it does not include the additional costs. Choice D, $40,210, is incorrect as it only represents the original price of the car without the added expenses.
2. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?
- A. 3/12
- B. 3/55
- C. 2/10
- D. 1/3
Correct answer: B
Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.
3. As part of a study, a set of patients will be divided into three groups: 1/2 of the patients will be in Group Alpha, 1/3 of the patients will be in Group Beta, and 1/6 of the patients will be in Group Gamma. Order the groups from smallest to largest, according to the number of patients in each group.
- A. Group Alpha, Group Beta, Group Gamma
- B. Group Alpha, Group Gamma, Group Beta
- C. Group Gamma, Group Alpha, Group Beta
- D. Group Gamma, Group Beta, Group Alpha
Correct answer: C
Rationale: The correct order from smallest to largest number of patients in each group is Group Gamma (1/6), Group Alpha (1/2), and Group Beta (1/3). Group Gamma has the smallest fraction of patients, followed by Group Alpha and then Group Beta. Therefore, choice C, 'Group Gamma, Group Alpha, Group Beta,' is the correct answer. Choices A, B, and D are incorrect because they do not follow the correct order based on the fractions of patients assigned to each group.
4. Express 18/5 as a reduced mixed number.
- A. 3 3/5
- B. 3 1/15
- C. 3 1/18
- D. 3 1/54
Correct answer: A
Rationale: 18/5 = 3 with a remainder of 3, so it is 3 3/5. 3 1/15 is equivalent to 46/15 which is greater than 18/5 3 1/18 converts to 55/18 which is also greater than 18/5 3 1/54 converts to 163/54
5. Find the area in square centimeters of a circle with a diameter of 16 centimeters. Use 3.14 for π.
- A. 25.12
- B. 50.24
- C. 100.48
- D. 200.96
Correct answer: D
Rationale: The formula for the area of a circle is: Area = π x (radius²). Given: Diameter = 16 cm, so Radius = Diameter / 2 = 16 / 2 = 8 cm. Now, calculate the area using π = 3.14: Area = 3.14 x (8²) = 3.14 x 64 = 200.96 cm². The correct answer is D (200.96 cm²) as it correctly calculates the area of the circle. Choices A, B, and C are incorrect as they do not represent the accurate area of the circle based on the given diameter and π value.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access