ATI TEAS 7
TEAS Test Math Questions
1. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 207.64
- B. 415.27
- C. 519.08
- D. 726.73
Correct answer: B
Rationale: The area of a circle is given by the formula A = π × r², where r is the radius. Since only half of the garden needs weeding, we calculate half the area. Using the given value of π (3.14) and a radius of 11.5 feet: A = 0.5 × 3.14 × (11.5)² A = 0.5 × 3.14 × 132.25 A = 0.5 × 415.27 A = 207.64 square feet. Thus, the area that needs weeding is approximately 207.64 square feet, making option B the correct answer. Choice A (207.64) is incorrect as it represents the total area of the circular garden, not just half of it. Choice C (519.08) and Choice D (726.73) are also incorrect as they do not reflect the correct calculation for finding the area of half the circular garden.
2. What is the solution to 4 x 7 + (25 – 21)²?
- A. 512
- B. 36
- C. 44
- D. 22
Correct answer: C
Rationale: To find the solution, first solve the expression inside the parentheses: 25 - 21 = 4. Then, square the result from the parentheses: 4² = 16. Next, perform the multiplication: 4 x 7 = 28. Finally, add the results: 28 + 16 = 44. Therefore, the correct answer is 44. Choice A (512), Choice B (36), and Choice D (22) are incorrect as they do not follow the correct order of operations for solving the given mathematical expression.
3. What is the overall median of Dwayne's current scores: 78, 92, 83, 97?
- A. 19
- B. 85
- C. 83
- D. 87.5
Correct answer: B
Rationale: To find the median of a set of numbers, first arrange the scores in ascending order: 78, 83, 92, 97. Since there is an even number of scores, we find the median by taking the average of the two middle values. In this case, the middle values are 83 and 92. Calculating (83 + 92) / 2 = 85, we determine that the overall median of Dwayne's scores is 85. Choice A (19) is incorrect as it does not correspond to any value in the given set of scores. Choice C (83) is the median of the original set but not the overall median once arranged. Choice D (87.5) is the average of all scores but not the median.
4. In Mrs. McConnell's classroom, there are 5 students with hazel eyes and 2 students with green eyes out of a total of 30 students. What percentage of the students have either hazel or green eyes?
- A. 0.23
- B. 0.3
- C. 0.47
- D. 0.77
Correct answer: A
Rationale: To calculate the percentage of students with either hazel or green eyes, add the number of students with hazel and green eyes (5 + 2 = 7) and divide by the total number of students (30): 7 ÷ 30 ≈ 0.23 or 23%. The correct answer is A, 0.23, which represents 23% of the total students. Choice B, 0.3, is incorrect as it corresponds to 30%, which is higher than the total number of students. Choice C, 0.47, is incorrect as it represents 47%, which is also higher than the total number of students. Choice D, 0.77, is incorrect as it corresponds to 77%, which is much higher than the total number of students.
5. After taking a certain antibiotic, Dr. Lee observed that 30% of all his patients developed an infection. He further noticed that 5% of those patients required hospitalization to recover from the infection. What percentage of Dr. Lee’s patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: A
Rationale: To find the percentage of Dr. Lee's patients hospitalized, you need to calculate 5% of the 30% who developed an infection. 5% of 30% is 1.5%. Therefore, 1.5% of Dr. Lee's patients were hospitalized. Choice A is correct. Choices B, C, and D are incorrect because they do not accurately reflect the calculation of the percentage of patients requiring hospitalization after taking the antibiotic.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access