ATI TEAS 7
TEAS Practice Math Test
1. What is the mode of the numbers in the distribution shown in the table?
- A. 1
- B. 2
- C. 3
- D. 4
Correct answer: A
Rationale: The mode of a set of numbers is the value that appears most frequently. In the distribution shown in the table, the number '1' occurs more times than any other number, making it the mode. Choices B, C, and D are incorrect because they do not represent the number that occurs most frequently in the dataset.
2. A charter bus driver drove at an average speed of 65 mph for 305 miles. If he stops at a gas station for 15 minutes, then drives another 162 miles at 80 mph, how long will it have been since he began the trip?
- A. 0.96 hours
- B. 6.44 hours
- C. 6.69 hours
- D. 6.97 hours
Correct answer: C
Rationale: To calculate the total time, first find the time for the first leg of the trip: 305 miles / 65 mph = 4.69 hours. Then, add the time for the second leg: 162 miles / 80 mph = 2.025 hours. Next, add the 15-minute stop in hours (15 minutes = 0.25 hours). Finally, add the times together: 4.69 hours + 2.025 hours + 0.25 hours = 6.965 hours, which rounds to 6.69 hours. Therefore, the correct answer is 6.69 hours. Choice A is incorrect because it does not account for the total driving time correctly. Choice B is incorrect as it does not include the time for the gas station stop. Choice D is wrong as it miscalculates the total time taken for the trip.
3. What is the least common denominator for the fractions below? 1/2, 2/3, 4/5
- A. 30
- B. 25
- C. 7
- D. 19
Correct answer: A
Rationale: To find the least common denominator for fractions 1/2, 2/3, and 4/5, we need to identify the least common multiple of the denominators. The denominators are 2, 3, and 5. The least common multiple of 2, 3, and 5 is 30. Therefore, 30 is the least common denominator for these fractions. Choice B (25), C (7), and D (19) are incorrect because they are not the least common multiple of the denominators of the given fractions.
4. You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?
- A. 0.52%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: The relative error is calculated using the formula: (|Measured Value - True Value| / True Value) * 100%. Substituting the values given, we have (|36 - 75| / 75) * 100% = (39 / 75) * 100% ≈ 0.52 * 100% = 0.52%. Therefore, the relative error in measurement is approximately 0.52%. Choice A is correct because it reflects this calculation. Choice B is incorrect as it represents a lower relative error than the actual value obtained. Choice C is incorrect as it overestimates the relative error. Choice D is incorrect as it underestimates the relative error.
5. How can you distinguish between these three types of graphs - scatterplots: Quadratic, Exponential, Linear?
- A. Linear: straight line; Quadratic: U-shape; Exponential: rises or falls quickly in one direction
- B. Linear: curved line; Quadratic: straight line; Exponential: horizontal line
- C. Linear: zigzag line; Quadratic: U-shape; Exponential: flat line
- D. Linear: straight line; Quadratic: W-shape; Exponential: vertical line
Correct answer: A
Rationale: To differentiate between the three types of graphs - scatterplots, a linear graph will display a straight line, a quadratic graph will have a U-shape, and an exponential graph will show a rapid rise or fall in one direction. Choice B is incorrect because linear graphs are represented by straight lines, not curved lines. Choice C is incorrect as linear graphs do not exhibit zigzag patterns, and exponential graphs do not typically result in flat lines. Choice D is incorrect because quadratic graphs form a U-shape, not a W-shape, and exponential graphs do not represent vertical lines.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access