ATI TEAS 7
TEAS Test Math Prep
1. Simplify the following expression: 5/9 × 15/36
- A. 5/36
- B. 8/27
- C. 10/17
- D. 15/27
Correct answer: A
Rationale: To simplify the given expression, multiply the numerators together and the denominators together. 5/9 × 15/36 = (5 × 15) / (9 × 36) = 75 / 324. Now, simplify the resulting fraction by finding the greatest common divisor (GCD) of 75 and 324, which is 3. Divide both the numerator and denominator by 3 to get the simplified fraction: 75 ÷ 3 / 324 ÷ 3 = 25 / 108. Therefore, the simplified form of 5/9 × 15/36 is 25/108, which is equivalent to 5/36. Choice A, 5/36, is the correct answer. Choice B, 8/27, is incorrect as it does not match the simplified form of the expression. Choice C, 10/17, is unrelated and does not result from the given multiplication. Choice D, 15/27, does not correspond to the simplification of the given expression.
2. What is the least common denominator of two fractions?
- A. The smallest number that is a multiple of both denominators
- B. The smallest number that both fractions can divide into evenly
- C. The least common multiple of both denominators
- D. The greatest common factor of both denominators
Correct answer: C
Rationale: The least common denominator of two fractions is the least common multiple of both denominators. This is because the least common denominator is the smallest number that both denominators can divide into evenly, ensuring that both fractions can be expressed with a common denominator. Choice A is incorrect as the least common denominator is a multiple of both denominators, not a number that multiplies into both. Choice B is incorrect because the common denominator needs to be a multiple of both denominators, not just a number they can divide into evenly. Choice D is incorrect as the greatest common factor is not used to find the least common denominator, but rather the least common multiple.
3. The phone bill is calculated each month using the equation C = 50 + 75D. The cost of the phone bill per month is represented by C, and D represents the gigabytes of data used that month. What is the value and interpretation of the slope of this equation?
- A. 75 dollars per gigabyte
- B. 75 gigabytes per day
- C. 50 dollars per day
- D. 50 dollars per gigabyte
Correct answer: A
Rationale: The slope of the equation C = 50 + 75D is 75. This means that for each additional gigabyte used (represented by D), the cost (represented by C) increases by 75 dollars. Therefore, the correct interpretation of the slope is that it is 75 dollars per gigabyte. Choice B, 75 gigabytes per day, is incorrect as the slope does not represent the rate of data usage per day. Choice C, 50 dollars per day, is incorrect as it does not reflect the relationship between gigabytes used and the cost. Choice D, 50 dollars per gigabyte, is incorrect as it does not match the slope value of 75 in the equation.
4. A leather recliner is on sale for 30% less than its original price. A consumer has a coupon that saves an additional 25% off of the sale price. If the consumer pays $237 for the recliner, what is the original price of the recliner to the nearest dollar?
- A. $316
- B. $431
- C. $451
- D. $527
Correct answer: D
Rationale: To find the original price of the recliner, you need to reverse calculate. Let x be the original price. The sale price is 70% of the original price, and after the additional 25% coupon discount, the consumer pays $237. Setting up the equation: x × 0.70 × 0.75 = 237. Solving this equation, x ≈ $527. Therefore, the original price of the recliner was approximately $527. Choices A, B, and C are incorrect as they do not align with the correct calculation based on the given discounts.
5. Find the area in square centimeters of a circle with a diameter of 16 centimeters. Use 3.14 for π.
- A. 25.12
- B. 50.24
- C. 100.48
- D. 200.96
Correct answer: D
Rationale: The formula for the area of a circle is: Area = π x (radius²). Given: Diameter = 16 cm, so Radius = Diameter / 2 = 16 / 2 = 8 cm. Now, calculate the area using π = 3.14: Area = 3.14 x (8²) = 3.14 x 64 = 200.96 cm². The correct answer is D (200.96 cm²) as it correctly calculates the area of the circle. Choices A, B, and C are incorrect as they do not represent the accurate area of the circle based on the given diameter and π value.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access