ATI TEAS 7
TEAS Practice Test Math
1. A soccer field is rectangular in shape and is 100 meters long and 75 meters wide. The hectare is a metric unit of area often used to measure larger areas. Given that 1 hectare = 10,000 square meters, which of the following represents the soccer field’s area in hectares?
- A. 0.75 hectares
- B. 7.5 hectares
- C. 7,500 hectares
- D. 75,000,000 hectares
Correct answer: A
Rationale: To find the area of the soccer field, multiply its length by its width: 100 meters × 75 meters = 7500 square meters. To convert this to hectares, divide by 10,000 (since 1 hectare = 10,000 square meters), resulting in 0.75 hectares. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not correctly convert the area to hectares. B and C are off by a factor of 10, while D is off by a factor of 10,000.
2. Simplify the following expression: 5 x 3 ÷ 9 x 4
- A. 5/12
- B. 8/13
- C. 20/27
- D. 47/36
Correct answer: A
Rationale: To simplify the expression 5 x 3 ÷ 9 x 4, first perform the multiplications and divisions from left to right: 5 x 3 = 15 and 9 x 4 = 36. So, the expression becomes 15 ÷ 36. When dividing fractions, multiply the first fraction by the reciprocal of the second fraction. Hence, 15 ÷ 36 = 15/36. To simplify the fraction further, find the greatest common divisor, which is 3. Divide both the numerator and denominator by 3 to get the final result: 15/36 = 5/12. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not represent the correct simplification of the given expression.
3. What is an equivalent fraction?
- A. A fraction that looks different but represents the same value
- B. A fraction that is smaller than another fraction
- C. A fraction that is larger than another fraction
- D. A fraction that has the same numerator as another fraction
Correct answer: A
Rationale: An equivalent fraction is a fraction that may look different in terms of its numerator and denominator but still represents the same value or quantity. This means that when you simplify or expand a fraction, its value remains unchanged. Choice B and C are incorrect because equivalent fractions are not determined by being smaller or larger than another fraction; it is about representing the same quantity. Choice D is incorrect because equivalent fractions may have different numerators as long as the ratio between the numerator and denominator remains the same.
4. What is the formula to find the circumference of a circle?
- A. Circumference = 2Ï€r
- B. Circumference = πr²
- C. Circumference = 2r²
- D. Circumference = r²π
Correct answer: A
Rationale: The correct formula to find the circumference of a circle is C = 2πr, where C represents the circumference and r is the radius of the circle. Choice B, Circumference = πr², represents the formula for the area of a circle rather than the circumference. Choice C, Circumference = 2r², is incorrect as it does not involve π in the formula. Choice D, Circumference = r²π, has the terms reversed compared to the correct formula; the formula should start with the constant (2) multiplied by π, followed by the radius.
5. A driver drove 305 miles at 65 mph, stopped for 15 minutes, then drove another 162 miles at 80 mph. How long was the trip?
- A. 6.44 hours
- B. 6.69 hours
- C. 6.97 hours
- D. 5.97 hours
Correct answer: B
Rationale: To find the total trip duration, calculate the driving time for each segment and add the stop time. The driving time for the first segment is 305 miles ÷ 65 mph = 4.69 hours. The driving time for the second segment is 162 miles ÷ 80 mph = 2.025 hours. Adding the 15-minute stop (0.25 hours) gives a total time of 4.69 hours + 2.025 hours + 0.25 hours = 6.965 hours, which is closest to 6.69 hours (Choice B). Option A is incorrect as it miscalculates the total duration. Option C is incorrect as it overestimates the total duration. Option D is incorrect as it underestimates the total duration.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access