ATI TEAS 7
TEAS Exam Math Practice
1. Which of the following is equivalent to 8 pounds and 8 ounces? (Round to the nearest tenth of a kilogram.)
- A. 3.6 kilograms
- B. 3.9 kilograms
- C. 17.6 kilograms
- D. 18.7 kilograms
Correct answer: B
Rationale: To convert 8 pounds and 8 ounces to kilograms, first convert 8 ounces to pounds by dividing by 16 (since 1 pound = 16 ounces): 8 ounces / 16 = 0.5 pounds. Then add this to the original 8 pounds: 8 pounds + 0.5 pounds = 8.5 pounds. To convert pounds to kilograms, use the conversion factor 1 pound = 0.453592 kilograms. Therefore, 8.5 pounds × 0.453592 kg = 3.855 kilograms, which rounds to 3.9 kilograms. Choice A (3.6 kilograms), Choice C (17.6 kilograms), and Choice D (18.7 kilograms) are incorrect conversions or have errors in calculation compared to the correct conversion of 3.9 kilograms.
2. As part of a study, a set of patients will be divided into three groups. 4/15 of the patients will be in Group Alpha, 2/5 in Group Beta, and 1/3 in Group Gamma. Order the groups from smallest to largest, according to the number of patients in each group.
- A. Group Alpha, Group Beta, Group Gamma
- B. Group Alpha, Group Gamma, Group Beta
- C. Group Gamma, Group Alpha, Group Beta
- D. Group Alpha, Group Beta, Group Gamma
Correct answer: B
Rationale: The correct order is Group Alpha, Group Gamma, Group Beta based on the common denominators of the fractions. To determine the order from smallest to largest, compare the fractions' numerators since the denominators are different. Group Alpha has 4/15 patients, Group Gamma has 1/3 patients, and Group Beta has 2/5 patients. Comparing the fractions' numerators, the order from smallest to largest is Group Alpha (4), Group Gamma (1), and Group Beta (2). Therefore, the correct order is Group Alpha, Group Gamma, Group Beta. Choice A is incorrect as it lists Group Beta before Group Gamma. Choice C is incorrect as it lists Group Gamma before Group Alpha. Choice D is incorrect as it lists Group Beta before Group Gamma, which is not in ascending order based on the number of patients.
3. Complete the following equation: 2 + (2)(2) - 2 ÷ 2 = ?
- A. 5
- B. 3
- C. 2
- D. 1
Correct answer: A
Rationale: To solve the equation, follow the order of operations (PEMDAS/BODMAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). 1. Calculate inside the parentheses first: (2)(2) = 4. 2. Then, perform multiplication and division: 2 + 4 - 1 = 6 - 1 = 5. Therefore, the correct answer is 5. Choice B (3) is incorrect because multiplication is done before subtraction. Choices C (2) and D (1) are incorrect as they do not follow the correct order of operations to solve the equation.
4. At the beginning of the day, Xavier has 20 apples. At lunch, he meets his sister Emma and gives her half of his apples. After lunch, he stops by his neighbor Jim's house and gives him 6 of his apples. He then uses 3/4 of his remaining apples to make an apple pie for dessert at dinner. At the end of the day, how many apples does Xavier have left?
- A. 4
- B. 6
- C. 2
- D. 1
Correct answer: D
Rationale: Xavier gives away half of his 20 apples (10), then gives 6 more apples, leaving him with 4 apples. He uses 3/4 of the remaining 4 apples (3) for the pie, leaving him with 1 apple at the end of the day. Therefore, the correct answer is 1. Choices A, B, and C are incorrect because they do not accurately reflect the calculations of apples given away and used for the pie, resulting in the remaining amount of 1 apple.
5. Veronica has to create the holiday schedule for the neonatal unit at her hospital. 35% of her staff will be unavailable during the holidays, and of the remaining staff, only 20% are certified to work in the neonatal unit. What percentage of the total staff is certified and available to work?
- A. 7%
- B. 13%
- C. 65%
- D. 80%
Correct answer: B
Rationale: The correct answer is 13%. To find the percentage of the total staff that is certified and available to work, we first calculate the percentage of staff available, which is 100% - 35% = 65%. Then, we find the percentage of the available staff that is certified, which is 20% of 65% = 0.20 × 0.65 = 0.13, or 13%.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access