a sign stating do not enter is in the shape of a square with side lengths of 75 centimeters what is the area in square centimeters
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Questions

1. A sign stating 'Do Not Enter' is in the shape of a square with side lengths of 75 centimeters. What is the area in square centimeters?

Correct answer: D

Rationale: The formula for the area of a square is given by the square of its side length: Area = side × side. For this problem, the side length of the square is 75 centimeters. To find the area, you multiply 75 by itself: 75 × 75 = 5,625 square centimeters. Thus, the area of the square is 5,625 cm². This shows that option D is correct. Choices A, B, and C are incorrect as they do not correspond to the correct calculation of the area of a square with a side length of 75 centimeters.

2. If a train travels 60 miles per hour for 2 hours, how far does the train travel?

Correct answer: C

Rationale: To find the distance traveled by the train, we use the formula Distance = Speed x Time. Given that the train travels at 60 miles per hour for 2 hours, the calculation would be 60 miles/hour x 2 hours = 120 miles. Therefore, the correct answer is 120 miles. Choice A (60 miles) is incorrect because it only represents the speed of the train, not the total distance traveled. Choice B (100 miles) is incorrect as it does not account for the full 2 hours of travel. Choice D (200 miles) is incorrect as it overestimates the distance by multiplying the speed by the time incorrectly.

3. Solve for x: 4(2x - 6) = 10x - 6

Correct answer: C

Rationale: To solve the equation 4(2x - 6) = 10x - 6, first distribute 4 into the parentheses: 8x - 24 = 10x - 6. Next, simplify the equation by rearranging terms: 8x - 10x = -6 + 24, which gives -2x = 18. Solving for x by dividing by -2 on both sides gives x = -9. Therefore, the correct answer is x = -9. Choice A (x = 5), Choice B (x = -7), and Choice D (x = 10) are incorrect solutions obtained by errors in solving the equation.

4. This chart indicates the number of sales of CDs, vinyl records, and MP3 downloads that occurred over the last year. Approximately what percentage of the total sales was from CDs?

Correct answer: C

Rationale: To determine the percentage of CD sales out of the total sales, we need to consider the total sales of CDs, vinyl records, and MP3 downloads. To find the percentage of CD sales, we divide the total sales of CDs by the sum of total sales of CDs, vinyl records, and MP3 downloads, and then multiply by 100. In this case, the correct calculation shows that CDs accounted for 40% of the total sales. Choice A (55%) is incorrect as it overestimates the contribution of CDs. Choice B (25%) is incorrect as it underestimates the percentage of CD sales. Choice D (5%) is also incorrect as it severely underestimates the share of CD sales in the total sales.

5. A school has 15 teachers and 20 teaching assistants. They have 200 students. What is the ratio of faculty to students?

Correct answer: B

Rationale: The total number of faculty members is 15 teachers + 20 teaching assistants = 35. The ratio of faculty to students is then 35:200, which simplifies to 7:40. Further simplifying by dividing both numbers by 5 gives the ratio 4:20, which can be simplified to 4:17. Therefore, the correct ratio is 4:17. Choices A, C, and D are incorrect ratios and do not match the calculated ratio of faculty members to students in this scenario.

Similar Questions

During January, Dr. Lewis worked 20 shifts. During February, she worked three times as many shifts as she did during January. During March, she worked half the number of shifts she worked during February. Which equation below describes the number of shifts Dr. Lewis worked in March?
Which is larger, feet or meters? What is the correct conversion factor between feet and meters?
Evaluate the expression -3 x 5.
Veronica paid an additional $3,015 for a surround sound system and $5,218 for a maintenance package. What was the total price of her new car?
A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses