ATI TEAS 7
TEAS Test Math Questions
1. A sign stating 'Do Not Enter' is in the shape of a square with side lengths of 75 centimeters. What is the area in square centimeters?
- A. 150
- B. 300
- C. 5,325
- D. 5,625
Correct answer: D
Rationale: The formula for the area of a square is given by the square of its side length: Area = side × side. For this problem, the side length of the square is 75 centimeters. To find the area, you multiply 75 by itself: 75 × 75 = 5,625 square centimeters. Thus, the area of the square is 5,625 cm². This shows that option D is correct. Choices A, B, and C are incorrect as they do not correspond to the correct calculation of the area of a square with a side length of 75 centimeters.
2. Can a rational number be a fraction or decimal, or must it be a whole number?
- A. It must be a whole number
- B. It can be a fraction or decimal
- C. It can be any of the three
- D. It cannot be a decimal
Correct answer: C
Rationale: The correct answer is C. A rational number can be a whole number, fraction, or decimal. A rational number is any number that can be expressed as a ratio of two integers (where the denominator is not zero), which includes whole numbers, fractions, and decimals. Choice A is incorrect because rational numbers are not limited to being whole numbers. Choice B is incorrect because a rational number can be a fraction, decimal, or whole number. Choice D is incorrect because rational numbers can definitely be decimals, as long as the decimal representation is either terminating or repeating.
3. What is the perimeter of a rectangle with a length of 12 cm and a width of 5 cm?
- A. 17 cm
- B. 24 cm
- C. 34 cm
- D. 40 cm
Correct answer: C
Rationale: The correct formula for the perimeter of a rectangle is P = 2(l + w), where l represents the length and w represents the width. Substituting the given values into the formula: P = 2(12 cm + 5 cm) = 2(17 cm) = 34 cm. Therefore, the perimeter of the rectangle is 34 cm. Choice A (17 cm) is incorrect as it seems to have added only the length and width without multiplying by 2. Choice B (24 cm) is incorrect as it does not consider the multiplication by 2. Choice D (40 cm) is incorrect as it seems to have added the length and width without multiplying by 2.
4. Solve for x: 3(x + 4) = 18
- A. x = 2
- B. x = 4
- C. x = 6
- D. x = 8
Correct answer: C
Rationale: To solve the equation 3(x + 4) = 18, first distribute the 3 to both terms inside the parentheses: 3x + 12 = 18. Next, isolate the variable x by subtracting 12 from both sides: 3x = 6. Finally, divide by 3 to solve for x, giving x = 6. Choice A, x = 2, is incorrect as the correct solution is x = 6. Choices B (x = 4) and D (x = 8) are also incorrect as they do not satisfy the given equation.
5. Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
- A. The median and the mean are equal.
- B. The mean is less than the mode.
- C. The mode is greater than the median.
- D. The median is less than the mean.
Correct answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access