ATI TEAS 7
TEAS Practice Test Math
1. What is the GCF (greatest common factor)?
- A. The largest factor that all the numbers share
- B. The smallest factor that all the numbers share
- C. The largest multiple that all the numbers share
- D. The smallest multiple that all the numbers share
Correct answer: A
Rationale: The greatest common factor (GCF) of a set of numbers is the largest factor that all the numbers share. This factor represents the highest number that can evenly divide each of the numbers in the set without any remainder. Choice B, 'The smallest factor that all the numbers share,' is incorrect because the GCF is the greatest, not the smallest, factor. Choices C and D, 'The largest multiple that all the numbers share' and 'The smallest multiple that all the numbers share,' are also incorrect as the GCF refers to factors, not multiples.
2. A dry cleaner charges $3 per shirt, $6 per pair of pants, and an extra $5 per item for mending. Annie drops off 5 shirts and 4 pairs of pants, 2 of which need mending. Assuming the cleaner charges an 8% sales tax, what will be the amount of Annie’s total bill?
- A. $45.08
- B. $49.00
- C. $52.92
- D. $88.20
Correct answer: C
Rationale: To determine the total cost before tax, calculate: 5 shirts × $3/shirt + 4 pants × $6/pair of pants + 2 items mended × $5/item mended = $49. Now, multiply this amount by 1.08 to include the 8% sales tax: $49 × 1.08 = $52.92. Therefore, Annie's total bill will be $52.92. Choice A, $45.08, is incorrect as it does not include the correct calculation for the total bill. Choice B, $49.00, is wrong because it is the total cost before tax and does not consider the added sales tax. Choice D, $88.20, is incorrect as it does not accurately calculate the total bill including the sales tax.
3. Find the area in square centimeters of a circle with a diameter of 16 centimeters. Use 3.14 for π.
- A. 25.12
- B. 50.24
- C. 100.48
- D. 200.96
Correct answer: D
Rationale: The formula for the area of a circle is: Area = π x (radius²). Given: Diameter = 16 cm, so Radius = Diameter / 2 = 16 / 2 = 8 cm. Now, calculate the area using π = 3.14: Area = 3.14 x (8²) = 3.14 x 64 = 200.96 cm². The correct answer is D (200.96 cm²) as it correctly calculates the area of the circle. Choices A, B, and C are incorrect as they do not represent the accurate area of the circle based on the given diameter and π value.
4. What is the area of the largest circle that can fit entirely inside a rectangle that measures 8 centimeters by 10 centimeters?
- A. 18π cm²
- B. 10π cm²
- C. 16π cm²
- D. 8π cm²
Correct answer: C
Rationale: The largest circle that can fit inside the rectangle would have a diameter of 8 cm, which means the radius is half of the diameter, thus 4 cm. The area of a circle is calculated using the formula A = πr², where r is the radius. Substituting the radius value into the formula, the area of the circle is π(4)² = 16π cm². Therefore, the correct answer is 16π cm². Choice A (18π cm²), B (10π cm²), and D (8π cm²) are incorrect because they do not represent the area of the largest circle that fits inside the given rectangle.
5. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access