how do you find the radius of a circle when given the diameter how do you find the radius of a circle when given the circumference
Logo

Nursing Elites

ATI TEAS 7

Math Practice TEAS Test

1. How do you find the radius of a circle when given the diameter? How do you find the radius of a circle when given the circumference?

Correct answer: A

Rationale: The correct way to find the radius of a circle when given the diameter is by dividing the diameter by 2 to get the radius (Radius = Diameter ÷ 2). When given the circumference, you need to divide the circumference by 2π to find the radius (Radius = Circumference ÷ 2π). Choice A provides the accurate formulas for finding the radius in both scenarios. Choices B, C, and D present incorrect formulas that do not align with the correct calculations for determining the radius of a circle based on the given information.

2. What percentage of the total rainfall in this timeframe occurs during October?

Correct answer: B

Rationale: To calculate the percentage of rainfall that occurs during October, divide October's rainfall (4.5 inches) by the total rainfall (29.38 inches) and multiply by 100. So, (4.5 / 29.38) * 100 = 15.31%. Among the choices given, option B, 0.151, is the closest to this calculated percentage. Options A, C, and D are not correct as they do not match the accurate calculation based on the provided data.

3. What is the result of the expression 102 – 7(3 – 4) – 25? Which of the following is correct?

Correct answer: D

Rationale: To simplify the expression, we follow the order of operations (PEMDAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). First, solve inside the parentheses: 3 - 4 = -1. Then, multiply -1 by 7: -1 * 7 = -7. Now, substitute these values back into the expression: 102 - (-7) - 25 = 102 + 7 - 25 = 109 - 25 = 84. Therefore, the correct answer is 84. Choices A, B, and C are incorrect as they do not represent the correct simplification of the given expression.

4. Express 3 5/7 as an improper fraction.

Correct answer: A

Rationale: To convert a mixed number to an improper fraction, multiply the whole number by the denominator of the fraction, then add the numerator. In this case, 3 * 7 + 5 = 21 + 5 = 26. So, 3 5/7 as an improper fraction is 26/7. Choice B (21/7) is incorrect because it represents the original fraction 3 5/7. Choice C (22/7) is incorrect and represents a different fraction. Choice D (26/5) is incorrect and does not reflect the proper conversion of the mixed number to an improper fraction.

5. As the number of credit hours a student takes in a semester increases, the amount of tuition, the amount of access fees, and the number of student loans available also increase. Which of the following is the independent variable?

Correct answer: B

Rationale: The correct answer is the number of credit hours. In this scenario, the number of credit hours is the independent variable because it is the factor that is intentionally changed or manipulated. The amount of tuition, access fees, and student loans are dependent variables as they are influenced by the number of credit hours a student takes. The number of credit hours drives the changes in the other factors, making it the independent variable.

Similar Questions

What percentage of the staff is certified and available to work in the neonatal unit during the holiday if 35% are on vacation and 20% of the remainder are certified?
A lab technician took 500 milliliters of blood from a patient. The technician used 1/6 of the blood for further tests. How many milliliters of blood were used for further tests? Round your answer to the nearest hundredth.
A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?
On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 50 cm². What is the actual area of the room?
x ÷ 7 = x − 36. Solve the equation. Which of the following is correct?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses