ATI TEAS 7
TEAS Test Practice Math
1. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?
- A. 4
- B. 7
- C. 8
- D. 13
Correct answer: C
Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.
2. Solve for x: 3(x - 1) = 2(3x - 9)
- A. x = 2
- B. x = 8/3
- C. x = -5
- D. x = 5
Correct answer: D
Rationale: To solve the equation 3(x - 1) = 2(3x - 9), first distribute and simplify both sides to get 3x - 3 = 6x - 18. Next, subtract 3x from both sides to get -3 = 3x - 18. Then, add 18 to both sides to obtain 15 = 3x. Finally, divide by 3 to find x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not represent the correct solution to the given equation after proper algebraic manipulation.
3. A woman’s dinner bill comes to $48.30. If she adds a 20% tip, which of the following will be her total bill?
- A. $9.66
- B. $38.64
- C. $48.30
- D. $57.96
Correct answer: D
Rationale: To calculate the total bill after adding a 20% tip, you need to find 120% of the original bill. This is because adding a 20% tip means paying 120% of the bill. So, $48.30 × 120/100 = $57.96. Therefore, the correct answer is $57.96. Choice A ($9.66) is incorrect as it represents only the 20% tip amount. Choice B ($38.64) is incorrect as it is the original bill amount without the tip. Choice C ($48.30) is incorrect as it is the original bill amount and does not include the additional 20% tip.
4. A driver drove 305 miles at 65 mph, stopped for 15 minutes, then drove another 162 miles at 80 mph. How long was the trip?
- A. 6.44 hours
- B. 6.69 hours
- C. 6.97 hours
- D. 5.97 hours
Correct answer: B
Rationale: To find the total trip duration, calculate the driving time for each segment and add the stop time. The driving time for the first segment is 305 miles ÷ 65 mph = 4.69 hours. The driving time for the second segment is 162 miles ÷ 80 mph = 2.025 hours. Adding the 15-minute stop (0.25 hours) gives a total time of 4.69 hours + 2.025 hours + 0.25 hours = 6.965 hours, which is closest to 6.69 hours (Choice B). Option A is incorrect as it miscalculates the total duration. Option C is incorrect as it overestimates the total duration. Option D is incorrect as it underestimates the total duration.
5. When the weights of the newborn babies are graphed, the distribution of weights is symmetric with the majority of weights centered around a single peak. Which of the following describes the shape of this distribution?
- A. Uniform
- B. Bimodal
- C. Bell-shaped
- D. Skewed right
Correct answer: C
Rationale: The correct answer is C: Bell-shaped. A symmetric distribution with a single peak is characteristic of a bell-shaped distribution, also known as a normal distribution. This distribution forms a symmetrical, bell-like curve when graphed. Choice A, 'Uniform,' would describe a distribution where all values have equal probability. Choice B, 'Bimodal,' would indicate a distribution with two distinct peaks. Choice D, 'Skewed right,' suggests a distribution where the tail on the right side is longer or more pronounced, unlike the symmetrical bell-shaped distribution described in the question.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access