ATI TEAS 7
TEAS Test Math Questions
1. What is the mean for the data set 16, 18, 17, 15, 19, 14, 12, 11, 10, 16, 18, and 17?
- A. 14.25
- B. 15.25
- C. 16
- D. 17
Correct answer: C
Rationale: To find the mean of a data set, you add up all the values and then divide by the total number of values. In this case, the sum of the data set is 185. Dividing this sum by the total number of values (12) gives you a mean of 16. Therefore, the correct answer is 16. Choice A (14.25), Choice B (15.25), and Choice D (17) are incorrect because they do not accurately represent the average value of the given data set.
2. A teacher asked all the students in the class which days of the week they get up after 8 a.m. Which of the following is the best way to display the frequency for each day of the week?
- A. Histogram
- B. Pie chart
- C. Bar graph
- D. Scatter plot
Correct answer: A
Rationale: A histogram is the best way to display the frequency for each day of the week in this scenario. Histograms are ideal for showing the distribution of numerical data by dividing it into intervals and representing the frequency of each interval with bars. In this case, each day of the week can be represented as a category with the frequency of students getting up after 8 a.m. displayed on the vertical axis. Choice B, a pie chart, would not be suitable for this scenario as it is more appropriate for showing parts of a whole, not frequency distributions. Choice C, a bar graph, could potentially work but is more commonly used to compare different categories rather than displaying frequency distribution data. Choice D, a scatter plot, is used to show the relationship between two variables and is not the best choice for displaying frequency for each day of the week.
3. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?
- A. 4
- B. 7
- C. 8
- D. 13
Correct answer: C
Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.
4. Which of the following is the correct decimal placement for the product of 1.6 * 0.93?
- A. 14.88
- B. 0.1488
- C. 1.488
- D. 0.001488
Correct answer: C
Rationale: To find the product of 1.6 * 0.93, you multiply these two numbers to get 1.488. Therefore, the correct decimal placement for the product is 1.488. Choice A, 14.88, is incorrect as it incorrectly places the decimal two spots to the right. Choice B, 0.1488, is incorrect as it incorrectly places the decimal one spot to the right. Choice D, 0.001488, is incorrect as it incorrectly places the decimal three spots to the right.
5. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
- A. 37%
- B. 74%
- C. 26%
- D. 15%
Correct answer: C
Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access