add 78 and 58 and express in reduced form
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Practice Test

1. What is the result of adding 7/8 and 5/8 and expressing the sum in reduced form?

Correct answer: C

Rationale: To add 7/8 and 5/8, we combine the numerators while keeping the denominator the same: 7/8 + 5/8 = (7+5)/8 = 12/8. To simplify this fraction, we divide both the numerator and the denominator by their greatest common factor, which is 4. This yields 12/8 = 3/2. Therefore, the reduced form of 7/8 + 5/8 is 3/2, which is also equivalent to 1.5 as a mixed number. However, the question specifically asks for the answer in reduced form, making choice C, 3/2 or 31/36 after further simplification, the correct answer. Choices A, B, and D are incorrect because they do not represent the correct result of adding 7/8 and 5/8 in reduced form.

2. Given that three vertices of a parallelogram are (1, 2), (3, 4), and (5, 6), what are the coordinates of the fourth vertex?

Correct answer: D

Rationale: To find the fourth vertex of a parallelogram, we can use the properties of a parallelogram. Opposite sides of a parallelogram are parallel and equal in length. Therefore, we can determine the fourth vertex by extending the line formed by the first two points. If we extend the line from (1, 2) to (3, 4), we find that it has a slope of 1. This means that extending the line from (3, 4) by the same slope will give us the fourth vertex. By adding 2 units to both x and y coordinates of (5, 6), we get (7, 8) as the coordinates of the fourth vertex. Therefore, the correct answer is (7, 8). Choices A, B, and C are incorrect as they do not satisfy the properties of a parallelogram and the given coordinate points.

3. Simplify the following expression: (2/7) ÷ (5/6)

Correct answer: D

Rationale: To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. In this case, (2/7) ÷ (5/6) becomes (2/7) × (6/5) = 12/35. Therefore, the correct answer is 12/35. Choice A (2/5), choice B (35/15), and choice C (5/21) are incorrect because they do not correctly simplify the given expression.

4. Andy has already saved $15. He plans to save $28 per month. Which of the following equations represents the amount of money he will have saved?

Correct answer: A

Rationale: The correct equation to represent the amount of money Andy will have saved is y = 15 + 28x. This is because Andy has already saved $15 and plans to save an additional $28 per month. Therefore, the total amount he will have saved can be calculated by adding the initial $15 to the monthly savings of $28 (28x), resulting in y = 15 + 28x. Choices B, C, and D do not correctly account for the initial $15 that Andy has saved and therefore do not represent the total amount correctly.

5. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.

Correct answer: B

Rationale: The formula for the area of a full circle is calculated as Area = π × (radius²). When finding the area of half a circle, we multiply by 0.5. Thus, the formula becomes Area = 0.5 × π × (radius²). Given that the radius of the circular garden is 11.5 feet, the calculation using π = 3.14 is as follows: Area = 0.5 × 3.14 × (11.5²) = 0.5 × 3.14 × 132.25 = 0.5 × 415.27 = 207.64 square feet. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not reflect the correct calculation for finding the area of half a circular garden with a radius of 11.5 feet.

Similar Questions

How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
What is 31% of 426?
Two even integers and one odd integer are multiplied together. Which of the following could be their product?
What is the area of a triangle with a base of 10 cm and a height of 7 cm?
What is the area of a rectangle with a length of 5 cm and a width of 4 cm?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses