add 78 and 58 and express in reduced form
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Practice Test

1. What is the result of adding 7/8 and 5/8 and expressing the sum in reduced form?

Correct answer: C

Rationale: To add 7/8 and 5/8, we combine the numerators while keeping the denominator the same: 7/8 + 5/8 = (7+5)/8 = 12/8. To simplify this fraction, we divide both the numerator and the denominator by their greatest common factor, which is 4. This yields 12/8 = 3/2. Therefore, the reduced form of 7/8 + 5/8 is 3/2, which is also equivalent to 1.5 as a mixed number. However, the question specifically asks for the answer in reduced form, making choice C, 3/2 or 31/36 after further simplification, the correct answer. Choices A, B, and D are incorrect because they do not represent the correct result of adding 7/8 and 5/8 in reduced form.

2. Erma has her eye on two sweaters, one for $50 and one for $44. With a sale of 25% off the cheaper item, what will she spend?

Correct answer: A

Rationale: Erma pays full price for the $50 sweater and gets 25% off the $44 sweater. 25% of $44 is $11, so she pays $33 for the second sweater. Therefore, the total amount Erma spends is $50 (first sweater) + $33 (second sweater) = $79. Choices B, C, and D are incorrect as they do not correctly calculate the total amount Erma would spend on both sweaters.

3. What percentage of rainfall received during this timeframe is received during the month of October?

Correct answer: D

Rationale: To determine the percentage of rainfall received during the month of October, we must first calculate the total rainfall for October and the total rainfall for the entire timeframe. Given that the total rainfall for October is 18.9 inches and the total rainfall from January to November is 106.3 inches, we can proceed with the calculation. The percentage is calculated as (18.9/106.3) x 100 = 17.7%. Therefore, the correct answer is D, 17.7%. Choice A (13.50%), Choice B (15.10%), and Choice C (16.90%) are incorrect as they do not align with the accurate calculation based on the provided data.

4. Solve the equation 3(2x+5)=11x+5 for x. Which of the following is correct?

Correct answer: B

Rationale: To solve the equation, distribute 3 to both terms inside the parentheses: 6x + 15 = 11x + 5. Then, move 11x to the left side by subtracting it from both sides: 6x - 11x = 5 - 15. Simplify to get -5x = -10. Divide by -5 to isolate x: x = 2. Therefore, the correct answer is x = 2. Choices A, C, and D are incorrect because they do not match the correct solution obtained by solving the equation step by step.

5. Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))

Correct answer: C

Rationale: To solve the given proportion 5(4x – 5) = (3/2)(2x – 6), first distribute to get 20x - 25 = 3x - 9. Then, simplify the linear equation by isolating x: 20x - 3x = 25 - 9, which leads to 17x = 16. Finally, solving for x gives x = 16/17. Choice A is incorrect as it does not match the calculated value of x. Choice B is incorrect as it does not correspond to the correct solution for x. Choice D is incorrect as it does not align with the accurate value of x obtained from solving the equation.

Similar Questions

The cost of renting a bicycle is $3.60 per hour. Which equation shows the best relationship between the total cost (C) and the number of hours (h) rented?
Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36
Which of the following is the y-intercept of the line whose equation is 7y − 42x + 7 = 0?
Solve for x: 2x + 4 = x - 6
How many quarts are in 1 liter?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses