ATI TEAS 7
TEAS Exam Math Practice
1. The owner of a newspaper has noticed that print subscriptions have gone down 40% while online subscriptions have gone up 60%. Print subscriptions once accounted for 70% of the newspaper’s business, and online subscriptions accounted for 25%. What is the overall percentage growth or decline in business?
- A. 13% decline
- B. 15% decline
- C. 28% growth
- D. 8% growth
Correct answer: A
Rationale: To calculate the decline in business, start with the 40% decline in the 70% share of print subscriptions: 40% of 70% = 0.40 × 0.70 = 0.28 = 28% decline. Next, calculate the growth from the 60% increase in the 25% share of online subscriptions: 60% of 25% = 0.60 × 0.25 = 0.15 = 15% growth. To find the overall change, sum the decline and growth percentages: 28% decline + 15% growth = -0.28 + 0.15 = -0.13 = 13% decline. Therefore, the overall percentage change in the newspaper's business is a 13% decline. Option A is the correct answer. Option B is incorrect because it doesn't consider the correct calculations for both the decline and growth. Option C is incorrect as it misinterprets the net change in business. Option D is incorrect as it miscalculates the overall percentage growth or decline.
2. After taxes, a worker earned $15,036 in 7 months. What is the amount the worker earned in 2 months?
- A. $2,148
- B. $4,296
- C. $6,444
- D. $8,592
Correct answer: B
Rationale: To find the amount earned in 2 months, set up a proportion using two ratios relating amount earned to months: (15,036/7) = (x /2). Cross-multiply and solve for x: 7x = 30,072, x = 4,296. Therefore, the worker earned $4,296 in 2 months. Choice A, $2,148, is incorrect as it is half of the correct answer. Choices C and D, $6,444 and $8,592, are incorrect as they do not correspond to the calculated proportion.
3. Solve for x: 3(x - 1) = 2(3x - 9)
- A. x = 2
- B. x = 8/3
- C. x = -5
- D. x = 5
Correct answer: D
Rationale: To solve the equation 3(x - 1) = 2(3x - 9), first distribute and simplify both sides to get 3x - 3 = 6x - 18. Next, subtract 3x from both sides to get -3 = 3x - 18. Then, add 18 to both sides to obtain 15 = 3x. Finally, divide by 3 to find x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not represent the correct solution to the given equation after proper algebraic manipulation.
4. Three friends are sharing a burger. One friend eats a quarter of the burger. The other two friends equally divide the rest among themselves. What portion of the burger did each of the other two friends receive?
- A. 6-Jan
- B. 4-Jan
- C. 4-Mar
- D. 8-Mar
Correct answer: D
Rationale: After one friend eats a quarter of the burger, 3/4 of the burger remains. Dividing this equally between the other two friends means each receives 3/8 of the whole burger. Therefore, the correct answer is 8-Mar. Choice A (6-Jan), Choice B (4-Jan), and Choice C (4-Mar) are incorrect as they do not accurately represent the portion each of the other two friends receives after one friend consumes a quarter of the burger.
5. A patient was taking 310 mg of an antidepressant daily. The doctor reduced the dosage by 1/5, and then reduced it again by 20 mg. What is the patient’s final dosage?
- A. 20 mg
- B. 42 mg
- C. 228 mg
- D. 248 mg
Correct answer: C
Rationale: To calculate the final dosage, first find 1/5 of 310 mg, which is 62 mg, and subtract it from the original dosage. This gives 310 mg - 62 mg = 248 mg. Then, subtract an additional 20 mg from the result to get the final dosage: 248 mg - 20 mg = 228 mg. Therefore, the patient's final dosage is 228 mg. Choice A (20 mg) is incorrect because it only considers the second reduction of 20 mg and misses the initial reduction by 1/5. Choice B (42 mg) is incorrect as it miscalculates the reduction amounts. Choice D (248 mg) is incorrect as it does not account for the second reduction of 20 mg.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access