ATI TEAS 7
Practice Math TEAS TEST
1. The length of a rectangle is 3 units greater than its width. Which expression correctly represents the perimeter of the rectangle?
- A. 2W + 2(W + 3)
- B. W + W + 3
- C. W(W + 3)
- D. 2W + 2(3W)
Correct answer: A
Rationale: To find the perimeter of a rectangle, you add up all its sides. In this case, the length is 3 units greater than the width, so the length can be expressed as W + 3. The formula for the perimeter of a rectangle is 2W + 2(L), where L represents the length. Substituting W + 3 for L, the correct expression for the perimeter becomes 2W + 2(W + 3), which simplifies to 2W + 2W + 6 or 4W + 6. Choices B, C, and D do not correctly represent the formula for the perimeter of a rectangle. Choice B simply adds the width twice to 3, neglecting the length. Choice C multiplies the width by the sum of the width and 3, which is incorrect. Choice D combines the width and 3 times the width, which is not the correct formula for the perimeter of a rectangle.
2. The phone bill is calculated each month using the equation y = 50x. The cost of the phone bill per month is represented by y and x represents the gigabytes of data used that month. What is the value and interpretation of the slope of this equation?
- A. 75 dollars per day
- B. 75 gigabytes per day
- C. 50 dollars per day
- D. 50 dollars per gigabyte
Correct answer: D
Rationale: The slope of the equation y = 50x is 50, which means that for each additional gigabyte of data used, the cost increases by 50 dollars. Therefore, the interpretation of the slope is that it represents the cost per gigabyte, making '50 dollars per gigabyte' the correct answer. Choices A, B, and C are incorrect because they do not reflect the relationship between the cost and the amount of data used in the given equation.
3. You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?
- A. 0.52%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: The relative error is calculated using the formula: (|Measured Value - True Value| / True Value) * 100%. Substituting the values given, we have (|36 - 75| / 75) * 100% = (39 / 75) * 100% ≈ 0.52 * 100% = 0.52%. Therefore, the relative error in measurement is approximately 0.52%. Choice A is correct because it reflects this calculation. Choice B is incorrect as it represents a lower relative error than the actual value obtained. Choice C is incorrect as it overestimates the relative error. Choice D is incorrect as it underestimates the relative error.
4. In a study measuring the average hours worked per week by different types of hospital staff (such as nurses and physicians), what are the dependent and independent variables?
- A. The dependent variable is Nurses. The independent variable is Physicians.
- B. The dependent variable is Physicians. The independent variable is Nurses.
- C. The dependent variable is Hospital Staff. The independent variable is Average hours worked per week.
- D. The dependent variable is Average hours worked per week. The independent variable is Hospital Staff.
Correct answer: D
Rationale: In this study, the dependent variable is the 'Average hours worked per week,' as it relies on the different types of 'Hospital Staff' (the independent variable). The amount of time worked per week varies based on the category of staff being considered. Therefore, the correct choice is D. Choices A and B incorrectly assign the dependent and independent variables to specific staff categories (Nurses and Physicians), which are actually different elements within the study. Choice C incorrectly defines the dependent variable as 'Hospital Staff,' when in fact, it is the 'Average hours worked per week' that is dependent on the type of staff.
5. Four people split a bill. The first person pays 1/5, the second person pays 1/3, and the third person pays 1/12. What fraction of the bill does the fourth person pay?
- A. 1/4
- B. 13/60
- C. 47/60
- D. 1/4
Correct answer: C
Rationale: To find the fourth person's share, subtract the fractions paid by the first three people from the total bill (1). The first person pays 1/5, the second person pays 1/3, and the third person pays 1/12. Adding these fractions gives 7/15. Subtracting this from 1 gives the fourth person's share as 8/15, which simplifies to 4/5. Therefore, the fourth person pays 4/5 of the bill. Option A (1/4) is incorrect because it does not consider the fractions paid by the first three people. Option B (13/60) is incorrect as it is not the remainder after subtracting the first three fractions from 1. Option D (1/4) is a duplicate of Option A and is also incorrect.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access