ATI TEAS 7
TEAS Test Math Questions
1. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
2. What is 15% of 200?
- A. 30
- B. 20
- C. 25
- D. 40
Correct answer: A
Rationale: To find 15% of 200, you multiply 0.15 by 200, which equals 30. Therefore, the correct answer is A. Choice B (20) is incorrect because it represents 10% of 200. Choice C (25) is incorrect as it does not accurately represent 15% of 200. Choice D (40) is incorrect as it represents 20% of 200.
3. Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of those 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
- A. 1.50%
- B. 5%
- C. 15%
- D. 30%
Correct answer: C
Rationale: Out of all the patients who took the antibiotic, 30% developed an infection. Among those with infections, 5% required hospitalization. To find the percentage of all patients hospitalized, we multiply the two percentages: 30% * 5% = 1.5%. Therefore, 1.5% of all patients were hospitalized. Choice A (1.50%) is the calculated percentage of all patients hospitalized, not 1.50%. Choice B (5%) is the percentage of patients who developed an infection and required hospitalization, not all patients. Choice D (30%) represents the initial percentage of patients who developed an infection, not the percentage hospitalized.
4. Arrange the following fractions from least to greatest: 2/3, 1/2, 5/8, 7/9.
- A. 7/9, 5/8, 2/3, 1/2
- B. 1/2, 2/3, 5/8, 7/9
- C. 1/2, 5/8, 2/3, 7/9
- D. 7/9, 2/3, 5/8, 1/2
Correct answer: C
Rationale: To compare the fractions, it is beneficial to convert them to decimals or find a common denominator. When converted to decimals: 1/2 = 0.50, 5/8 = 0.625, 2/3 ≈ 0.666, and 7/9 ≈ 0.778. Therefore, the correct order from least to greatest is 1/2, 5/8, 2/3, 7/9. Choice A is incorrect because it places 7/9 first, which is the greatest fraction. Choice B is incorrect as it incorrectly lists the fractions. Choice D is incorrect as it starts with 7/9, which is the largest fraction instead of the smallest.
5. In a fraction, which number is the numerator and which is the denominator?
- A. Numerator: top, Denominator: bottom
- B. Numerator: bottom, Denominator: top
- C. Numerator: left, Denominator: right
- D. Numerator: right, Denominator: left
Correct answer: A
Rationale: The correct answer is A: 'Numerator: top, Denominator: bottom.' In a fraction, the numerator is the top number, representing the part of the whole being considered, while the denominator is the bottom number, indicating the total number of equal parts into which the whole is divided. Choices B, C, and D are incorrect because they provide inaccurate descriptions of the numerator and denominator positions in a fraction.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access