ATI TEAS 7
Math Practice TEAS Test
1. What is the least common denominator of two fractions?
- A. The smallest number that is a multiple of both denominators
- B. The smallest number that both fractions can divide into evenly
- C. The least common multiple of both denominators
- D. The greatest common factor of both denominators
Correct answer: C
Rationale: The least common denominator of two fractions is the least common multiple of both denominators. This is because the least common denominator is the smallest number that both denominators can divide into evenly, ensuring that both fractions can be expressed with a common denominator. Choice A is incorrect as the least common denominator is a multiple of both denominators, not a number that multiplies into both. Choice B is incorrect because the common denominator needs to be a multiple of both denominators, not just a number they can divide into evenly. Choice D is incorrect as the greatest common factor is not used to find the least common denominator, but rather the least common multiple.
2. What is 31% of 426?
- A. 425.69
- B. 132.06
- C. 13.7
- D. 0.07
Correct answer: B
Rationale: To find 31% of 426, multiply 0.31 by 426. This gives 0.31 × 426 = 132.06. Therefore, choice B, 132.06, is the correct answer. Choice A, 425.69, is close to the original number but is not the correct answer for the percentage calculation. Choice C, 13.7, is not the correct result for 31% of 426. Choice D, 0.07, is significantly lower than the correct answer and does not represent 31% of 426.
3. What number is 6 equal to 30% of?
- A. 18
- B. 20
- C. 24
- D. 26
Correct answer: A
Rationale: To find the number that is 30% of 6, you can set up the equation 0.3x = 6. Solving for x gives x = 6 / 0.3 = 20. Therefore, 6 is equal to 30% of 20. Choice B, 20, is incorrect as it is the result of the calculation. Choice C, 24, and Choice D, 26, are incorrect as they are not the numbers that 6 is equal to 30% of.
4. What kind of relationship between a predictor and a dependent variable is indicated by a line that travels from the bottom-left of a graph to the upper-right of the graph?
- A. Positive
- B. Negative
- C. Exponential
- D. Logarithmic
Correct answer: A
Rationale: A line that travels from the bottom-left of a graph to the upper-right of the graph signifies a positive relationship between the predictor and dependent variable. This indicates that as the predictor variable increases, the dependent variable also increases. Choice B, 'Negative,' is incorrect as a negative relationship would be depicted by a line that travels from the top-left to the bottom-right of the graph. Choices C and D, 'Exponential' and 'Logarithmic,' respectively, represent specific types of relationships characterized by non-linear patterns, unlike the linear positive relationship shown in the described scenario.
5. Given the double bar graph shown below, which of the following statements is true?
- A. Group A is negatively skewed, while Group B is approximately normal.
- B. Group A is positively skewed, while Group B is approximately normal.
- C. Group A is approximately normal, while Group B is negatively skewed.
- D. Group A is approximately normal, while Group B is positively skewed.
Correct answer: B
Rationale: The correct answer is B. In a double bar graph, Group A is positively skewed, meaning its data is clustered on the left and has a tail extending to the right. On the other hand, Group B displays a normal distribution where the data is evenly distributed around the mean. Choices A, C, and D are incorrect as they inaccurately describe the skewness and distribution of the data in Group A and Group B.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access