how many red cans did she buy
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Prep

1. Sarah buys one red can of paint every month. If she continues this for four months, how many red cans did she buy?

Correct answer: C

Rationale: The correct answer is C. Sarah buys one red can of paint every month for four months. Therefore, if she continues this pattern for four months, she would have bought a total of 4 red cans. Choices A, B, and D are incorrect because they do not reflect the total number of red cans accumulated over the specified period of four months.

2. A student gets an 85% on a test with 20 questions. How many answers did the student solve correctly?

Correct answer: C

Rationale: To determine the number of questions the student solved correctly, we need to calculate 85% of the total number of questions. This can be done by multiplying the total number of questions by 85%, which is 20 questions x 85% = 20 x 0.85 = 17 questions. Therefore, the student solved 17 questions correctly. Choice A, 15, is incorrect as it does not reflect the correct percentage of questions solved. Choice B, 16, and Choice D, 18, are also incorrect as they do not match the calculation based on the given percentage.

3. Which of the following is the independent variable in the equation below? f(t)=4t+9

Correct answer: C

Rationale: The independent variable in a function is the variable that is being manipulated or changed to obtain different values. In the equation f(t) = 4t + 9, the variable 't' is the independent variable. It is the variable that the function f(t) depends on, and changing its value will result in different outputs for the function. The other choices, 'f', '9', and '4', are not the independent variable as they do not represent the variable that is being manipulated to determine the function's output.

4. Simplify the expression: 2x + 3x - 5.

Correct answer: A

Rationale: To simplify the expression 2𝑥 + 3𝑥 - 5, follow these steps: Identify and combine like terms. The terms 2𝑥 and 3𝑥 are both 'like terms' because they both contain the variable 𝑥. Add the coefficients of the like terms: 2𝑥 + 3𝑥 = 5𝑥. Simplify the expression. After combining the like terms, the expression becomes 5𝑥 - 5, which includes the simplified term 5𝑥 and the constant -5. Thus, the fully simplified expression is 5𝑥 - 5, making Option A the correct answer. This method ensures all terms are correctly simplified by combining similar elements and retaining constants.

5. What number is equivalent to -3 + 2 * 8 + 3?

Correct answer: B

Rationale: To solve this expression, we first follow the order of operations (PEMDAS/BODMAS). According to this rule, we start by multiplying 2 by 8, which equals 16. Then, we add -3 and 3 to get 0. Finally, adding 0 to 16 gives us the correct answer of 16. The correct answer is B. Choice A (11) results from adding all the numbers without considering the multiplication first. Choice C (28) is the result of adding all the numbers without considering any operations. Choice D (80) is incorrect as it does not correctly follow the order of operations.

Similar Questions

What is the number of students who said their favorite color is blue if 35% of 100 students chose blue as their favorite color?
Which of the following lists is in order from least to greatest? 2−1 , −(4/3), (−1)3 , (2/5)
Simplify the expression. Which of the following is the value of x? (5(4x – 5) = (3/2)(2x – 6))
While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?
In Mrs. McConnell's classroom, there are 5 students with hazel eyes and 2 students with green eyes out of a total of 30 students. What percentage of the students have either hazel or green eyes?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$49/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses