ATI TEAS 7
TEAS Practice Math Test
1. Susan decided to celebrate getting her first nursing job by purchasing a new outfit. She bought a dress for $69.99, shoes for $39.99, and accessories for $34.67. What was the total cost of Susan’s outfit?
- A. $69.99
- B. $75.31
- C. $109.98
- D. $144.65
Correct answer: D
Rationale: To find the total cost of Susan's outfit, you need to add the prices of the dress, shoes, and accessories. $69.99 (dress) + $39.99 (shoes) + $34.67 (accessories) = $144.65. Therefore, the correct answer is $144.65. Option A ($69.99) is incorrect as it only represents the price of the dress. Option B ($75.31) is incorrect as it does not account for the total cost. Option C ($109.98) is incorrect as it does not include the individual prices of all items purchased.
2. Solve the following equation: 3(2y+50)−4y=500
- A. y = 125
- B. y = 175
- C. y = 150
- D. y = 200
Correct answer: B
Rationale: To solve the equation 3(2y+50)−4y=500, first distribute to get 6y+150−4y=500. Combining like terms results in 2𝑦 + 150 = 500. By subtracting 150 from both sides, we get 2y = 350. Dividing by 2 gives y = 175. Therefore, the correct answer is B. Choices A, C, and D are incorrect because they do not correctly follow the steps of distributing, combining like terms, and isolating the variable to solve for y.
3. What defines a composite number?
- A. A number with only two factors
- B. A number that is a fraction
- C. A number with more than 2 factors
- D. A number with exactly two factors
Correct answer: C
Rationale: A composite number is a positive integer greater than one that has more than two factors. Choice A is incorrect because a number with only two factors is a prime number. Choice B is incorrect as being a fraction does not define a composite number. Choice D is incorrect because a number with exactly two factors is a prime number, not a composite number.
4. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?
- A. 30
- B. 45
- C. 36
- D. 40
Correct answer: A
Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours ≈ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.
5. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 207.64
- B. 415.27
- C. 519.08
- D. 726.73
Correct answer: B
Rationale: The area of a circle is given by the formula A = π × r², where r is the radius. Since only half of the garden needs weeding, we calculate half the area. Using the given value of π (3.14) and a radius of 11.5 feet: A = 0.5 × 3.14 × (11.5)² A = 0.5 × 3.14 × 132.25 A = 0.5 × 415.27 A = 207.64 square feet. Thus, the area that needs weeding is approximately 207.64 square feet, making option B the correct answer. Choice A (207.64) is incorrect as it represents the total area of the circular garden, not just half of it. Choice C (519.08) and Choice D (726.73) are also incorrect as they do not reflect the correct calculation for finding the area of half the circular garden.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access