ATI TEAS 7
TEAS Test Practice Math
1. Prizes are to be awarded to the best pupils in each class of an elementary school. The number of students in each grade is shown in the table, and the school principal wants the number of prizes awarded in each grade to be proportional to the number of students. If there are twenty prizes, how many should go to fifth-grade students? Grade 1 2 3 4 5 Students 35 38 38 33 36
- A. 5
- B. 4
- C. 7
- D. 3
Correct answer: C
Rationale: To determine how many prizes should be awarded to 5th-grade students, we need to set up the proportion of the number of 5th-grade students to the total number of students in the school. The total number of students is 35 + 38 + 38 + 33 + 36 = 180 students. To find the proportion of 5th-grade students, it would be 36/180 = 0.2. Since there are 20 prizes to be awarded, multiplying 0.2 by 20 gives us 4, which means 4 prizes should go to the 5th-grade students. Therefore, the correct answer is 4. Choice A (5) is incorrect as it does not align with the proportional distribution. Choice B (4) is the correct answer, as calculated. Choice C (7) is incorrect as it exceeds the total number of prizes available. Choice D (3) is incorrect as it does not match the proportional distribution based on the number of students.
2. Approximately by what percentage are there more female staff members in City Y compared to City X?
- A. 5%
- B. 10%
- C. 15%
- D. 20%
Correct answer: D
Rationale: To find the percentage difference in female staff members between City Y and City X, you subtract the percentage of female staff members in City X from the percentage in City Y. So, 60% (City Y) - 40% (City X) = 20%. This means there are 20% more female staff members in City Y compared to City X. Choices A, B, and C are incorrect percentages and do not accurately represent the 20% difference between the two cities.
3. What is the simplified form of the expression (x^2 + 2x)/(x)?
- A. x + 2
- B. x^2 + 2
- C. x(x + 2)
- D. 1 + 2/x
Correct answer: A
Rationale: To simplify the expression (x^2 + 2x)/(x), we factor out x from the numerator to get x(x + 2) and then cancel the x in the denominator. This simplifies to x + 2, making choice A the correct answer. Choice B (x^2 + 2) is incorrect as it does not account for the division by x. Choice C (x(x + 2)) is also incorrect as it represents the factored form before cancellation. Choice D (1 + 2/x) is incorrect as it does not simplify the expression correctly.
4. Which of the following statements demonstrates a negative correlation between two variables?
- A. People who play baseball more tend to have more hits
- B. Shorter people tend to weigh less than taller people
- C. Tennis balls that are older tend to have less bounce
- D. Cars that are older tend to have higher mileage
Correct answer: C
Rationale: The correct answer is C. This statement demonstrates a negative correlation between two variables as it indicates that as tennis balls age, their bounce tends to decrease. In a negative correlation, as one variable increases, the other tends to decrease. Choices A, B, and D do not illustrate a negative correlation. Choice A describes a positive correlation, as playing baseball more is associated with having more hits. Choice B does not show a correlation but a general observation. Choice D also does not demonstrate a correlation; it simply states that older cars tend to have higher mileage, without implying a relationship between age and mileage.
5. Sally wants to buy a used truck for her delivery business. Truck A is priced at $450 and gets 25 miles per gallon. Truck B costs $650 and gets 35 miles per gallon. If gasoline costs $4 per gallon, how many miles must Sally drive to make truck B the better buy?
- A. 500
- B. 7500
- C. 1750
- D. 4375
Correct answer: D
Rationale: To determine the breakeven point where Truck B becomes the better buy, we need to compare the total costs for both trucks. For Truck A: Total cost = $450 + (miles / 25) * $4. For Truck B: Total cost = $650 + (miles / 35) * $4. To find the point where Truck B is the better buy, set the two total cost equations equal to each other and solve for miles. By solving this equation, we find that Sally must drive 4375 miles for Truck B to be the better buy. Choice A (500) is too low, Choice B (7500) is too high, and Choice C (1750) does not represent the breakeven point where Truck B becomes more cost-effective.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access