ATI TEAS 7
TEAS Practice Test Math
1. A consumer recently purchased a new car and paid $48,000. This amount is $2,000 less than twice what the consumer’s friend paid for their car. Which of the following is the amount that the friend paid for their car?
- A. $23,000
- B. $46,000
- C. $25,000
- D. $50,000
Correct answer: C
Rationale: To find the amount the friend paid, you can set up the equation 2x - 2000 = 48000, where x represents the amount the friend paid. Solving this equation gives x = $25,000. Therefore, the friend paid $25,000. Choice A ($23,000) is incorrect because it does not account for the $2,000 difference mentioned in the question. Choice B ($46,000) is incorrect because it is double the amount needed. Choice D ($50,000) is incorrect as it does not consider the $2,000 less mentioned in the question.
2. Solve for x: 3(x + 4) = 18
- A. x = 2
- B. x = 4
- C. x = 6
- D. x = 8
Correct answer: C
Rationale: To solve the equation 3(x + 4) = 18, first distribute the 3 to both terms inside the parentheses: 3x + 12 = 18. Next, isolate the variable x by subtracting 12 from both sides: 3x = 6. Finally, divide by 3 to solve for x, giving x = 6. Choice A, x = 2, is incorrect as the correct solution is x = 6. Choices B (x = 4) and D (x = 8) are also incorrect as they do not satisfy the given equation.
3. What is the formula to find the circumference of a circle?
- A. Circumference = 2πr
- B. Circumference = πr²
- C. Circumference = 2r²
- D. Circumference = r²π
Correct answer: A
Rationale: The correct formula to find the circumference of a circle is C = 2πr, where C represents the circumference and r is the radius of the circle. Choice B, Circumference = πr², represents the formula for the area of a circle rather than the circumference. Choice C, Circumference = 2r², is incorrect as it does not involve π in the formula. Choice D, Circumference = r²π, has the terms reversed compared to the correct formula; the formula should start with the constant (2) multiplied by π, followed by the radius.
4. Given a double bar graph, which statement is true about the distributions of Group A and Group B?
- A. Group A is negatively skewed, Group B is normal.
- B. Group A is positively skewed, Group B is normal.
- C. Group A is positively skewed, Group B is neutral.
- D. Group A is normal, Group B is negatively skewed.
Correct answer: B
Rationale: The correct answer is B. In statistical terms, a positively skewed distribution means that the tail on the right side of the distribution is longer or fatter than the left side, indicating more high values. Therefore, Group A is positively skewed. Conversely, an approximately normal distribution, also known as a bell curve, is symmetrical with no skewness. Hence, Group B is normal. Choices A, C, and D are incorrect because they do not accurately describe the skewness of Group A and the normal distribution of Group B as depicted in a double bar graph.
5. What defines an integer?
- A. A whole number (not a fraction or decimal!) that can be positive, negative, or zero
- B. A number with a decimal point
- C. A fraction
- D. A percentage
Correct answer: A
Rationale: An integer is a whole number that can be positive, negative, or zero. It does not include fractions or decimals. Choice B, 'A number with a decimal point,' is incorrect because integers do not have decimal points. Choice C, 'A fraction,' is incorrect because integers are not expressed as ratios of two integers. Choice D, 'A percentage,' is incorrect because integers are not necessarily related to proportions out of 100.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access