ATI TEAS 7
TEAS Test Sample Math Questions
1. What is the result of adding 1/6 and 1/2, expressed in reduced form?
- A. 9/7
- B. 1/3
- C. 31/36
- D. 3/5
Correct answer: B
Rationale: To add 1/6 and 1/2, you need a common denominator, which is 6. So, 1/6 + 3/6 = 4/6. Simplifying 4/6 gives 2/3, which is the correct answer (1/3). Choices A, C, and D are incorrect as they do not represent the correct sum of the fractions 1/6 and 1/2.
2. If a train travels 60 miles per hour for 2 hours, how far does the train travel?
- A. 60 miles
- B. 100 miles
- C. 120 miles
- D. 200 miles
Correct answer: C
Rationale: To find the distance traveled by the train, we use the formula Distance = Speed x Time. Given that the train travels at 60 miles per hour for 2 hours, the calculation would be 60 miles/hour x 2 hours = 120 miles. Therefore, the correct answer is 120 miles. Choice A (60 miles) is incorrect because it only represents the speed of the train, not the total distance traveled. Choice B (100 miles) is incorrect as it does not account for the full 2 hours of travel. Choice D (200 miles) is incorrect as it overestimates the distance by multiplying the speed by the time incorrectly.
3. If m represents a car’s average mileage in miles per gallon, p represents the price of gas in dollars per gallon, and d represents a distance in miles, which of the following algebraic equations represents the cost, c, of gas per mile?
- A. c = dp/m
- B. c = p/m
- C. c = mp/d
- D. c = m/p
Correct answer: B
Rationale: The cost of gas per mile, c, is calculated by dividing the price of gas, represented by p, by the car's average mileage, represented by m. Therefore, the correct equation is c = p/m. Choice A (dp/m) incorrectly multiplies the price of gas and distance, while choice C (mp/d) incorrectly multiplies the average mileage and price of gas. Choice D (m/p) incorrectly divides the average mileage by the price of gas, which does not represent the cost of gas per mile.
4. What is the probability of consecutively pulling two more orange blocks, without replacement, from a bag containing 3 orange blocks, 5 green blocks, and 4 purple blocks?
- A. 3/12
- B. 3/55
- C. 2/10
- D. 1/3
Correct answer: B
Rationale: To calculate the probability of consecutively pulling two more orange blocks without replacement, we first determine the probability of pulling an orange block on the first draw, which is 3/12 (3 orange blocks out of 12 total blocks). After removing one orange block, there are only 11 blocks left, so the probability of pulling another orange block on the second draw is 2/11. To find the combined probability, we multiply the probabilities together: (3/12) * (2/11) = 6/132 = 3/55. Therefore, the correct answer is B. Choice A (3/12) incorrectly simplifies the probability before calculating the second draw. Choice C (2/10) does not consider the specific number of orange blocks in the bag. Choice D (1/3) does not account for the reduced number of blocks after the first draw.
5. Apply the polynomial identity to rewrite (a + b)².
- A. a² + b²
- B. 2ab
- C. a² + 2ab + b²
- D. a² - 2ab + b²
Correct answer: C
Rationale: When you see something like (a + b)², it means you're multiplying (a + b) by itself: (a + b)² = (a + b) × (a + b) To expand this, we use the distributive property (which says you multiply each term in the first bracket by each term in the second bracket): Multiply the first term in the first bracket (a) by both terms in the second bracket: a × a = a² a × b = ab Multiply the second term in the first bracket (b) by both terms in the second bracket: b × a = ab b × b = b² Now, add up all the results from the multiplication: a² + ab + ab + b² Since ab + ab is the same as 2ab, we can simplify it to: a² + 2ab + b² So, (a + b)² = a² + 2ab + b². This is known as a basic polynomial identity, and it shows that when you square a binomial (a two-term expression like a + b), you get three terms: the square of the first term (a²), twice the product of the two terms (2ab), and the square of the second term (b²). Therefore, the correct answer is C (a² + 2ab + b²)
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access