ATI TEAS 7
TEAS 7 Math Practice Test
1. Within a nursing program, 25% of the class wanted to work with infants, 60% wanted to work with the elderly, 10% wanted to assist general practitioners, and the rest were undecided. What fraction of the class wanted to work with the elderly?
- A. 1/4
- B. 1/10
- C. 3/5
- D. 1/20
Correct answer: C
Rationale: To find the fraction of the class wanting to work with the elderly, we convert the percentage to a fraction. 60% can be written as 60/100, which simplifies to 3/5. Therefore, 3/5 of the class wanted to work with the elderly. Choice A (1/4), choice B (1/10), and choice D (1/20) do not represent the fraction of the class wanting to work with the elderly, making them incorrect.
2. Express the solution to the following problem in decimal form:
- A. 0.042
- B. 84%
- C. 0.84
- D. 0.42
Correct answer: C
Rationale: The correct answer is C: 0.84. To convert a percentage to a decimal, you divide the percentage value by 100. In this case, 84% divided by 100 equals 0.84. Choice A, 0.042, is not the correct conversion of 84%. Choice B, 84%, is already in percentage form and needs to be converted to a decimal. Choice D, 0.42, is not the correct conversion of 84% either. Therefore, the correct decimal form of 84% is 0.84.
3. Joshua has to earn more than 92 points on a state test to qualify for a scholarship. Each question is worth 4 points, and the test has 30 questions. Which inequality can be solved to determine the number of questions Joshua must answer correctly?
- A. 4x < 30
- B. 4x < 92
- C. 4x > 30
- D. 4x > 92
Correct answer: D
Rationale: Joshua must answer more than 92 points' worth of questions. Since each question is worth 4 points, the inequality is 4x > 92. Choice A (4x < 30) is incorrect as it represents that Joshua must answer less than 30 questions correctly, not earning more than 92 points. Choice B (4x < 92) is incorrect as it signifies that Joshua must earn less than 92 points, which contradicts the requirement. Choice C (4x > 30) is incorrect as it implies that Joshua must answer more than 30 questions correctly, but the threshold is 92 points, not 30 points.
4. A woman wants to stack two small bookcases beneath a window that is 26 inches from the floor. The larger bookcase is 14 inches tall. The other bookcase is 8 inches tall. How tall will the two bookcases be when they are stacked together?
- A. 12 inches tall
- B. 22 inches tall
- C. 35 inches tall
- D. 41 inches tall
Correct answer: B
Rationale: When the woman stacks the two bookcases together, the total height will be the sum of the heights of the two bookcases. Therefore, 14 inches (larger bookcase) + 8 inches (smaller bookcase) = 22 inches. So, the stacked bookcases will be 22 inches tall. Choice A is incorrect because it does not account for the total height of both bookcases. Choice C and D are incorrect as they are higher than the combined height of the two bookcases.
5. Joshua needs more than 92 points to qualify for a scholarship. Each question is worth 4 points, and there are 30 questions. What inequality determines how many questions he must answer correctly?
- A. 4x < 92
- B. 4x > 92
- C. 4x < 120
- D. 4x > 120
Correct answer: B
Rationale: To determine the number of questions Joshua must answer correctly, we divide the total points required (92) by the points per question (4) to get 23. Since he needs more than 92 points, he must answer more than 23 questions correctly, which is represented by the inequality 4x > 92. Choices A, C, and D are incorrect because they do not accurately reflect the requirement for Joshua to answer more than 92 points' worth of questions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access