ATI TEAS 7
TEAS 7 Math Practice Test
1. Within a nursing program, 25% of the class wanted to work with infants, 60% wanted to work with the elderly, 10% wanted to assist general practitioners, and the rest were undecided. What fraction of the class wanted to work with the elderly?
- A. 1/4
- B. 1/10
- C. 3/5
- D. 1/20
Correct answer: C
Rationale: To find the fraction of the class wanting to work with the elderly, we convert the percentage to a fraction. 60% can be written as 60/100, which simplifies to 3/5. Therefore, 3/5 of the class wanted to work with the elderly. Choice A (1/4), choice B (1/10), and choice D (1/20) do not represent the fraction of the class wanting to work with the elderly, making them incorrect.
2. In a study where 60% of respondents use smartphones to check their email, and 5,000 respondents were included, how many respondents use smartphones for email?
- A. 3,000 respondents
- B. 2,500 respondents
- C. 5,000 respondents
- D. 1,000 respondents
Correct answer: A
Rationale: In the study, 60% of 5,000 respondents using smartphones for email would equal 3,000 respondents, not the total number of respondents. Therefore, the correct answer is 3,000 respondents. Choice B, 2,500 respondents, is incorrect because it doesn't consider the percentage of smartphone users. Choice C, 5,000 respondents, is incorrect as it represents the total number of respondents, not the specific number using smartphones for email. Choice D, 1,000 respondents, is incorrect as it is not the correct calculation based on the given information.
3. Solve the system of equations. Equation 1: 2x + y = 0 Equation 2: x - 2y = 8
- A. (1.8, 3.6) and (-1.8, -3.6)
- B. (1.8, -3.6) and (-1.8, 3.6)
- C. (1.3, 2.6) and (-1.3, -2.6)
- D. (-1.3, 2.6) and (1.3, -2.6)
Correct answer: B
Rationale: From Equation 1: 2x + y = 0. Solve for y: y = -2x. Substitute y = -2x into Equation 2: x - 2(-2x) = 8. Simplify to x + 4x = 8, then 5x = 8, and x = 8 ÷ 5 = 1.6. Substitute x = 1.6 back into y = -2x to find y = -3.2. Therefore, one solution is (1.6, -3.2). To find the second solution, use -1.6 for x to get (-1.6, 3.2). Thus, the correct answer is B, representing the solutions (1.8, -3.6) and (-1.8, 3.6). Choices A, C, and D contain incorrect values that do not match the solutions derived from solving the system of equations.
4. In the problem 6 + 3 × 2, which operation should be completed first?
- A. Multiplication
- B. Addition
- C. Division
- D. Subtraction
Correct answer: A
Rationale: The correct answer is 'Multiplication.' According to the order of operations (PEMDAS), which stands for Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right), multiplication should be completed first. In the given expression, 3 × 2 should be solved before adding 6 to the result. This means that the multiplication operation should be prioritized over addition. Choices B, C, and D are incorrect because, in the order of operations, multiplication takes precedence over addition, division, and subtraction, respectively.
5. The cost, in dollars, of shipping x computers to California for sale is 3000 + 100x. The amount received when selling these computers is 400x dollars. What is the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost?
- A. 10
- B. 15
- C. 20
- D. 25
Correct answer: B
Rationale: To find the least number of computers that must be shipped and sold so that the amount received is at least equal to the shipping cost, we set up the inequality 400x >= 3000 + 100x. Simplifying this inequality gives 300x >= 3000, and dividing by 300 results in x >= 10. Therefore, at least 15 computers must be shipped and sold to cover the shipping cost, making choice B the correct answer. Choices A, C, and D are incorrect as they represent numbers less than 15, which would not cover the shipping cost.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access