ATI TEAS 7
TEAS Test Math Prep
1. Solve for x: 3(x - 5) = 2(x + 3)
- A. x = 3
- B. x = 6
- C. x = 9
- D. x = 12
Correct answer: A
Rationale: To solve the equation 3(x - 5) = 2(x + 3) for x, start by distributing the terms inside the parentheses. This gives you 3x - 15 = 2x + 6. Next, combine like terms by moving all terms with x to one side and the constants to the other side. Subtracting 2x from both sides gives x - 15 = 6. Finally, adding 15 to both sides results in x = 21. Therefore, the correct answer is A: x = 3. Choices B, C, and D are incorrect as they do not result from the correct calculations of the equation.
2. Solve for x in the equation: 3x - 5 = 16
- A. 7
- B. 5
- C. 8
- D. 9
Correct answer: C
Rationale: To solve for x, add 5 to both sides of the equation: 3x - 5 + 5 = 16 + 5, which simplifies to 3x = 21. Next, divide both sides by 3: x = 21 ÷ 3 = 7. Therefore, the correct answer is x = 7, making option A the correct choice. Option C, '8,' is incorrect as it is not the solution obtained from the correct calculations. Options B and D, '5' and '9,' are also incorrect and not the solution to the given equation.
3. Approximately by what percentage are there more female staff members in City Y compared to City X?
- A. 5%
- B. 10%
- C. 15%
- D. 20%
Correct answer: D
Rationale: To find the percentage difference in female staff members between City Y and City X, you subtract the percentage of female staff members in City X from the percentage in City Y. So, 60% (City Y) - 40% (City X) = 20%. This means there are 20% more female staff members in City Y compared to City X. Choices A, B, and C are incorrect percentages and do not accurately represent the 20% difference between the two cities.
4. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
5. Mathew has to earn more than 96 points on his high school entrance exam in order to be eligible for varsity sports. Each question is worth 3 points, and the test has a total of 40 questions. Let x represent the number of test questions. How many questions can Mathew answer incorrectly and still qualify for varsity sports?
- A. x > 32
- B. x > 8
- C. 0 ≤ x < 8
- D. 0 ≤ x ≤ 8
Correct answer: C
Rationale: To determine the number of correct answers Mathew needs, solve the inequality: 3x > 96. This simplifies to x > 32. Therefore, Mathew must answer more than 32 questions correctly to qualify for varsity sports. Since the test consists of 40 questions, he can afford to answer at most 40 - 32 = 8 questions incorrectly. Therefore, the correct answer is 0 ≤ x < 8. Option A (x > 32) is incorrect as it suggests Mathew needs to answer more than 32 questions correctly, which is not the case. Option B (x > 8) is also incorrect as it does not account for the total number of questions in the test. Option D (0 ≤ x ≤ 8) is incorrect as it includes the possibility of answering all questions incorrectly, which is not allowed for Mathew to qualify for varsity sports.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access