solve for x 3x 5 2x 3
Logo

Nursing Elites

ATI TEAS 7

TEAS Test Math Prep

1. Solve for x: 3(x - 5) = 2(x + 3)

Correct answer: A

Rationale: To solve the equation 3(x - 5) = 2(x + 3) for x, start by distributing the terms inside the parentheses. This gives you 3x - 15 = 2x + 6. Next, combine like terms by moving all terms with x to one side and the constants to the other side. Subtracting 2x from both sides gives x - 15 = 6. Finally, adding 15 to both sides results in x = 21. Therefore, the correct answer is A: x = 3. Choices B, C, and D are incorrect as they do not result from the correct calculations of the equation.

2. If you pull an orange block from a bag of 3 orange, 5 green, and 4 purple blocks, what is the probability of consecutively pulling two more orange blocks without replacement?

Correct answer: B

Rationale: To calculate the probability of pulling two more orange blocks consecutively without replacement after the initial orange block is pulled, we need to multiply the probabilities. After the first orange block is pulled, there are 2 orange blocks left out of a total of 11 blocks remaining. So, the probability of pulling a second orange block is 2/11. Therefore, the overall probability is (3/12) * (2/11) = 3/55. Choice A (1/12) is incorrect because it only considers the probability of the first orange block being pulled. Choice C (1/55) is incorrect as it represents the probability of pulling two orange blocks in a row, not the consecutive pulls after the initial pull. Choice D (2/33) is incorrect as it does not reflect the correct calculation for the consecutive pulls of orange blocks.

3. Joshua has to earn more than 92 points on a state test to qualify for a scholarship. Each question is worth 4 points, and the test has 30 questions. Which inequality can be solved to determine the number of questions Joshua must answer correctly?

Correct answer: D

Rationale: Joshua must answer more than 92 points' worth of questions. Since each question is worth 4 points, the inequality is 4x > 92. Choice A (4x < 30) is incorrect as it represents that Joshua must answer less than 30 questions correctly, not earning more than 92 points. Choice B (4x < 92) is incorrect as it signifies that Joshua must earn less than 92 points, which contradicts the requirement. Choice C (4x > 30) is incorrect as it implies that Joshua must answer more than 30 questions correctly, but the threshold is 92 points, not 30 points.

4. If the width of a rectangle is 4 inches (in) and the area of the rectangle is 32 in², what is the length of the rectangle?

Correct answer: A

Rationale: To find the length of the rectangle, we use the formula: Length = Area / Width. Substituting the values given, Length = 32 in² / 4 in = 8 in. Therefore, the correct answer is A. Choice B (28 in), Choice C (36 in), and Choice D (128 in) are incorrect because they do not correctly calculate the length based on the given width and area of the rectangle.

5. In the town of Ellsford, there are approximately 1,450 residents who attend church weekly. If around 400 of them attend Catholic Churches, what percentage of churchgoers in Ellsford attends Catholic Churches?

Correct answer: B

Rationale: To find the percentage of churchgoers who attend Catholic Churches, divide the number of Catholic churchgoers by the total number of churchgoers and then multiply by 100. (400 ÷ 1,450) × 100 ≈ 27.59%, which rounds to 28%.

Similar Questions

How is the number -4 classified?
The hypotenuse (side C) of a triangle is 13 inches long. Which of the following pairs of measurements could be correct for the lengths of the other two sides of the triangle? (Note: A² + B² = C²)
What is the mathematical expression for 'Twelve less than thrice a number'?
What is the formula for the area of a circle?
A container holds 10 liters of water. If 25% of the water is used, how many liters are left?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$1/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses