ATI TEAS 7
TEAS Exam Math Practice
1. Which of the following lists is in order from least to greatest? (1/7), 0.125, (6/9), 0.60
- A. (1/7), 0.125, (6/9), 0.60
- B. (1/7), 0.125, 0.60, (6/9)
- C. 0.125, (1/7), 0.60, 6/9
- D. 0.125, (1/7), (6/9), 0.60
Correct answer: C
Rationale: To determine the order from least to greatest, convert all fractions to decimals and compare them. Converting the fractions: (1/7) ≈ 0.14, (6/9) ≈ 0.67. The decimals in order from least to greatest are: 0.125 < 0.14 < 0.60 < 0.67. Therefore, the correct order is 0.125, (1/7), 0.60, 6/9, making choice C the correct answer. Choice A is incorrect as it lists (1/7) before 0.125. Choice B is incorrect as it places 0.60 before (6/9). Choice D is incorrect as it lists (6/9) before 0.60.
2. Kyle has $950 in savings and wishes to donate one-fifth of it to 8 local charities. He estimates that he will donate around $30 to each charity. Which of the following correctly describes the reasonableness of his estimate?
- A. It is reasonable because $190 is one-fifth of $950
- B. It is reasonable because $190 is less than one-fifth of $1,000
- C. It is not reasonable because $240 is more than one-fifth of $1,000
- D. It is not reasonable because $240 is one-fifth of $1,000
Correct answer: C
Rationale: Kyle initially had $950 in savings, and one-fifth of that amount would be $190. Since he wishes to donate around $30 to each charity, the total amount he would donate to 8 local charities would be $30 x 8 = $240. This amount is more than one-fifth of $1,000, making the estimate not reasonable. Choice A is incorrect because $190 is the correct one-fifth of $950, not $900. Choice B is incorrect as it compares $190 to a different amount ($1,000) rather than the actual total. Choice D is incorrect as it states that $240 is one-fifth of $1,000, which is inaccurate.
3. Simplify the following expression: 13 - 3/22 - 11
- A. 19/22
- B. 7/22
- C. 10/11
- D. 5/11
Correct answer: B
Rationale: To simplify the expression, first find a common denominator for the fractions. 3/22 can be rewritten as 6/22. Now, the expression becomes 13/22 - 6/22 - 11. Subtracting 6/22 from 13/22 gives 7/22. Therefore, the correct answer is 7/22. Choice A, 19/22, is incorrect as the subtraction was not done properly. Choices C and D are incorrect as they are not part of the expression being simplified.
4. Complete the following equation: 5 + 3 × 4 - 6 / 2 = ?
- A. 5
- B. 9
- C. 11
- D. 7
Correct answer: B
Rationale: To solve this equation, follow the order of operations (PEMDAS/BODMAS): First, perform multiplication and division from left to right. 3 × 4 equals 12, and 6 / 2 equals 3. Then, carry out addition and subtraction from left to right. 5 + 12 - 3 equals 14, not 9. Therefore, the correct answer is 14, making choice B the correct answer. Choices A, C, and D can be eliminated as they do not match the correct result obtained by following the order of operations.
5. Adam is painting the outside of a 4-walled shed. The shed is 5 feet wide, 4 feet deep, and 7 feet high. Which of the following is the amount of paint Adam will need for the four walls?
- A. 80 ft²
- B. 126 ft²
- C. 140 ft²
- D. 560 ft²
Correct answer: B
Rationale: To find the amount of paint needed for the four walls of the shed, calculate the total area of the four walls. The shed has two pairs of identical walls. The area of one pair of walls is 5 feet (width) x 7 feet (height) + 4 feet (depth) x 7 feet (height) = 35 ft² + 28 ft² = 63 ft². Since there are two pairs of walls, the total area for the four walls is 2 x 63 ft² = 126 ft². Therefore, Adam will need 126 ft² of paint for the four walls. Choice A, 80 ft², is incorrect as it does not account for the total surface area of all four walls. Choice C, 140 ft², is incorrect as it overestimates the area required. Choice D, 560 ft², is incorrect as it significantly overestimates the amount of paint needed for the shed.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access