solve for x 2x 4 x 6
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Math Practice Test

1. Solve for x: 2x + 4 = x - 6

Correct answer: D

Rationale: To solve the equation 2x + 4 = x - 6, first, subtract x from both sides to get x + 4 = -6. Then, subtract 4 from both sides to isolate x, resulting in x = -10. Therefore, the correct answer is x = -10. Choice A is incorrect as it does not follow the correct steps of solving the equation. Choice B is incorrect as it is the result of combining x terms incorrectly. Choice C is incorrect as it is not the correct result of solving the equation step by step.

2. While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?

Correct answer: C

Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.

3. Sarah works part-time and earns $12 per hour. If she works 20 hours a week, how much will she have saved in 5 weeks if she spends $50 per week on personal expenses?

Correct answer: C

Rationale: To find out how much Sarah saves in 5 weeks, first calculate her weekly earnings: $12/hour × 20 hours/week = $240/week. Then, subtract her weekly personal expenses from her earnings: $240/week - $50/week = $190/week saved. Over 5 weeks, she will save $190/week × 5 weeks = $950. However, none of the provided answer choices match $950. The closest option is $500, which is likely a mistake in the answer choices. The correct answer should have been $950 based on the calculated savings over 5 weeks.

4. If Stella's current weight is 56 kilograms, what is her approximate weight in pounds?

Correct answer: A

Rationale: To convert kilograms to pounds, you multiply the weight in kilograms by 2.2. So, 56 kilograms * 2.2 = 123.2 pounds, which can be approximated to 123 pounds. Therefore, Choice A is correct. Choices B, C, and D are incorrect as they do not match the correct conversion from kilograms to pounds for Stella's weight of 56 kilograms.

5. Which of the following is the correct simplification of the expression below? 12 ÷ 3 × 4 - 1 + 23

Correct answer: C

Rationale: The correct order of operations dictates solving division and multiplication before addition and subtraction. Therefore, following the order: (12 ÷ 3) × 4 - 1 + 23 = 4 × 4 - 1 + 23 = 16 - 1 + 23 = 38. Choice A (6) results from adding and subtracting before division and multiplication. Choice B (21) results from incorrect placement of parentheses. Choice D (23) is the last number in the expression and does not reflect the cumulative result of the operations.

Similar Questions

Adrian measures the circumference of a circular picture frame with a radius of 3 inches. Which of the following is the best estimate for the circumference of the frame?
How many feet are in a mile?
Bob decides to go into business selling lemonade. He buys a wooden stand for $45 and sets it up outside his house. He figures that the cost of lemons, sugar, and paper cups for each glass of lemonade sold will be 10¢. Which of these expressions describes his cost for making g glasses of lemonade?
What is the value of b in this equation? 5b - 4 = 2b + 17
A patient requires a 30% decrease in the dosage of their medication. Their current dosage is 340 mg. What will their dosage be after the decrease?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses