ATI TEAS 7
Math Practice TEAS Test
1. Four more than a number is 2 less than 5\6 of another number. Which equation represents this?
- A. x + 4 = 5\6y - 2
- B. x + 4 = 2 - 5\6y
- C. 4 + x = 5\6y + 2
- D. x + 4 = 5\6y - 2
Correct answer: A
Rationale: The equation that represents the relationship is x + 4 = 5\6y - 2.
2. In a study measuring the average hours worked per week by different types of hospital staff (such as nurses and physicians), what are the dependent and independent variables?
- A. The dependent variable is Nurses. The independent variable is Physicians.
- B. The dependent variable is Physicians. The independent variable is Nurses.
- C. The dependent variable is Hospital Staff. The independent variable is Average hours worked per week.
- D. The dependent variable is Average hours worked per week. The independent variable is Hospital Staff.
Correct answer: D
Rationale: In this study, the dependent variable is the 'Average hours worked per week,' as it relies on the different types of 'Hospital Staff' (the independent variable). The amount of time worked per week varies based on the category of staff being considered. Therefore, the correct choice is D. Choices A and B incorrectly assign the dependent and independent variables to specific staff categories (Nurses and Physicians), which are actually different elements within the study. Choice C incorrectly defines the dependent variable as 'Hospital Staff,' when in fact, it is the 'Average hours worked per week' that is dependent on the type of staff.
3. What is the least common denominator for the fractions below? 1/2, 2/3, 4/5
- A. 30
- B. 25
- C. 7
- D. 19
Correct answer: A
Rationale: To find the least common denominator for fractions 1/2, 2/3, and 4/5, we need to identify the least common multiple of the denominators. The denominators are 2, 3, and 5. The least common multiple of 2, 3, and 5 is 30. Therefore, 30 is the least common denominator for these fractions. Choice B (25), C (7), and D (19) are incorrect because they are not the least common multiple of the denominators of the given fractions.
4. Which of the following describes a proportional relationship?
- A. Johnathan opens a savings account with an initial deposit of $150 and deposits $125 per month
- B. Bruce pays his employees $12 per hour worked during the month of December, as well as a $250 bonus
- C. Alvin pays $28 per month for his phone service plus $0.07 for each long-distance minute used
- D. Kevin drives 65 miles per hour
Correct answer: A
Rationale: A proportional relationship is one in which two quantities vary directly with each other. In choice A, the amount deposited per month is directly proportional to the initial deposit. The relationship can be represented as y = 125x + 150, where x is the number of months and y is the total amount in the account. Choices B and C involve additional fixed amounts or variable costs that do not maintain a constant ratio, making them non-proportional relationships. Choice D refers to a constant speed of driving, which is not a proportional relationship as it does not involve varying quantities that change in direct proportion.
5. A piece of wood that is 7 1/2 feet long has 3 1/4 feet cut off. How many feet of wood remain?
- A. 4 1/4 feet
- B. 4 1/2 feet
- C. 3 1/2 feet
- D. 3 3/4 feet
Correct answer: A
Rationale: To find the remaining length of wood, you need to subtract 3 1/4 feet from 7 1/2 feet. When you subtract the fractions, 7 1/2 - 3 1/4, you get 15/2 - 13/4 = 30/4 - 13/4 = 17/4 = 4 1/4 feet. Therefore, the correct answer is 4 1/4 feet. Choice B (4 1/2 feet) is incorrect because the subtraction result is not 1/2. Choice C (3 1/2 feet) is incorrect as it does not match the correct result of 4 1/4 feet. Choice D (3 3/4 feet) is also incorrect as it does not align with the correct answer obtained from the subtraction of fractions.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access