ATI TEAS 7
ATI TEAS Math Practice Test
1. Simplify the following expression:
- A. 1 9/16
- B. 1 1/4
- C. 2 1/8
- D. 2
Correct answer: A
Rationale: To simplify the given expression, start by performing the division first: (2/3) ÷ (4/15) = (2/3) × (15/4) = 30/12 = 5/2. Next, multiply this result by 5/8: 5/2 × 5/8 = 25/16 = 1 9/16. Therefore, the correct answer is A. Choice B (1 1/4) is incorrect as it does not match the simplified result. Choice C (2 1/8) is incorrect as it does not represent the simplified expression. Choice D (2) is incorrect as it does not account for the fractions in the original expression.
2. In a fraction, which number is the numerator and which is the denominator?
- A. Numerator: top, Denominator: bottom
- B. Numerator: bottom, Denominator: top
- C. Numerator: left, Denominator: right
- D. Numerator: right, Denominator: left
Correct answer: A
Rationale: The correct answer is A: 'Numerator: top, Denominator: bottom.' In a fraction, the numerator is the top number, representing the part of the whole being considered, while the denominator is the bottom number, indicating the total number of equal parts into which the whole is divided. Choices B, C, and D are incorrect because they provide inaccurate descriptions of the numerator and denominator positions in a fraction.
3. A certain exam has 30 questions. A student gets 1 point for each question answered correctly and loses half a point for each question answered incorrectly; no points are gained or lost for questions left blank. If x represents the number of questions a student answers correctly and y represents the number of questions left blank, which of the following expressions represents the student's score on the exam?
- A. x - y/2
- B. x - y
- C. 30 - (x + y)
- D. 30 - x - y/2
Correct answer: A
Rationale: The student's score is calculated by adding the points earned for correct answers (x) and subtracting the points lost for incorrect answers (y/2). Therefore, the expression for the student's score on the exam is x - y/2. Option A is correct because it accurately represents this calculation. Option B (x - y) is incorrect as it does not account for the penalty of losing half a point for each incorrect answer. Option C (30 - (x + y)) is incorrect as it subtracts the total number of questions from the sum of correct and blank answers, which does not represent the scoring system. Option D (30 - x - y/2) is also incorrect as it incorrectly subtracts x from 30 and then deducts y divided by 2, which is not the correct scoring method for the exam.
4. Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home in the evening, however, the traffic was much heavier, and the same trip took an hour and a half. What was his average speed in miles per hour for the round trip?
- A. 30
- B. 45
- C. 36
- D. 40
Correct answer: A
Rationale: To find the average speed for the round trip, we calculate the total distance and total time traveled. The total distance for the round trip is 45 miles each way, so 45 miles * 2 = 90 miles. The total time taken for the morning trip is 1 hour and 10 minutes (1.17 hours), and for the evening trip is 1.5 hours. Therefore, the total time for the round trip is 1.17 hours + 1.5 hours = 2.67 hours. To find the average speed, we divide the total distance by the total time: 90 miles / 2.67 hours ≈ 33.7 miles per hour. The closest option is A, 30 miles per hour, making it the correct answer. Choice B (45) is the total distance for the round trip, not the average speed. Choices C (36) and D (40) are not derived from the correct calculations and do not represent the average speed for the round trip.
5. During January, Dr. Lewis worked 20 shifts. During February, she worked three times as many shifts as she did during January. During March, she worked half the number of shifts she worked during February. Which equation below describes the number of shifts Dr. Lewis worked in March?
- A. shifts = 20 + 3 + 1/2
- B. shifts = (20)(3)(1/2)
- C. shifts = (20)(3) + 1/2
- D. shifts = 20 + (3)(1/2)
Correct answer: B
Rationale: During January, Dr. Lewis worked 20 shifts. Shifts for January = 20. During February, she worked three times as many shifts as she did during January. Shifts for February = (20)(3) = 60. During March, she worked half the number of shifts she worked in February. Shifts for March = (60)(1/2) = 30. Therefore, the correct equation to describe the number of shifts Dr. Lewis worked in March is 'shifts = (20)(3)(1/2)', representing the calculation based on the given scenario. Choices A, C, and D do not accurately represent the correct mathematical relationship between the shifts worked in the different months, making them incorrect.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access