ATI TEAS 7
TEAS Exam Math Practice
1. If the price of a shirt was originally $30 and it is now being sold at a 20% discount, what is the sale price of the shirt?
- A. $24
- B. $25
- C. $26
- D. $28
Correct answer: A
Rationale: To find the discount amount, calculate 20% of $30: 0.20 × $30 = $6. Subtract the discount from the original price to get the sale price: $30 - $6 = $24. Therefore, the correct answer is $24. Choices B, C, and D are incorrect as they do not reflect the correct calculation of applying a 20% discount to the original price of $30.
2. A rectangular solid box has a square base with a side length of 5 feet and a height of h feet. If the volume of the box is 200 cubic feet, which of the following equations can be used to find h?
- A. 5h = 200
- B. 5h² = 200
- C. 25h = 200
- D. h = 200 ÷ 5
Correct answer: C
Rationale: The volume formula for a rectangular solid is V = l × w × h. In this case, the length and width are both 5 feet. Substituting the values into the formula gives V = 5 × 5 × h = 25h = 200. Therefore, h = 200 ÷ 25 = 8. Option A is incorrect because the product of length, width, and height is not directly equal to the volume. Option B is incorrect as squaring the height is not part of the volume formula. Option D is incorrect as it oversimplifies the relationship between height and volume, not considering the base dimensions.
3. Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
- A. The median and the mean are equal.
- B. The mean is less than the mode.
- C. The mode is greater than the median.
- D. The median is less than the mean.
Correct answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.
4. Veronica decided to celebrate her promotion by purchasing a new car. The base price for the car was $40,210. She paid an additional $3,015 for a surround sound system and $5,218 for a maintenance package. What was the total price of Veronica’s new car?
- A. $50,210
- B. $48,443
- C. $43,225
- D. $40,210
Correct answer: B
Rationale: To find the total price of Veronica's new car, add the base price, the cost of the surround sound system, and the cost of the maintenance package. Calculation: $40,210 (base price) + $3,015 (sound system) + $5,218 (maintenance package) = $48,443. Therefore, the correct answer is $48,443. Choice A, $50,210, is incorrect as it does not include the maintenance package cost. Choice C, $43,225, is incorrect as it only considers the base price and the maintenance package but omits the sound system cost. Choice D, $40,210, is the base price alone and does not account for the additional costs of the sound system and maintenance package.
5. What is the solution to 4 x 7 + (25 – 21)²?
- A. 512
- B. 36
- C. 44
- D. 22
Correct answer: C
Rationale: To find the solution, first solve the expression inside the parentheses: 25 - 21 = 4. Then, square the result from the parentheses: 4² = 16. Next, perform the multiplication: 4 x 7 = 28. Finally, add the results: 28 + 16 = 44. Therefore, the correct answer is 44. Choice A (512), Choice B (36), and Choice D (22) are incorrect as they do not follow the correct order of operations for solving the given mathematical expression.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access