ATI TEAS 7
TEAS Test Practice Math
1. In the winter of 2006, 6 inches of snow fell in Chicago, IL. The following winter, 3 inches of snowfall fell in Chicago. What was the percent decrease in snowfall in Chicago between those two winters?
- A. 69.40%
- B. 59.00%
- C. 41.00%
- D. 24.70%
Correct answer: C
Rationale: To calculate the percent decrease in snowfall between the two winters, use the formula: Percent Decrease = ((Initial Value - Final Value) / Initial Value) * 100. In this case, the initial value is 6 inches and the final value is 3 inches. Plug these values into the formula: ((6 - 3) / 6) * 100 = (3 / 6) * 100 = 0.5 * 100 = 50%. Therefore, the correct answer is 50%, which is not listed among the choices provided. Among the given choices, the closest percentage is 41.00%, which corresponds to choice C.
2. Bridget is repainting her rectangular bedroom. Two walls measure 15 feet by 9 feet, and the other two measure 12.5 feet by 9 feet. One gallon of paint covers an average of 32 square meters. Which of the following is the number of gallons of paint that Bridget will use? (There are 3.28 feet in 1 meter.)
- A. 0.72 gallons
- B. 1.43 gallons
- C. 4.72 gallons
- D. 15.5 gallons
Correct answer: B
Rationale: First, convert the dimensions to meters: 15 ft. × (1 m/3.28 ft.) = 4.57 m; 9 ft. × (1 m/3.28 ft.) = 2.74 m; 12.5 ft. × (1 m/3.28 ft.) = 3.81 m. Next, find the total area in square meters: total area = 2(4.57 m × 2.74 m) + 2(3.81 m × 2.74 m) = 45.9 m². Finally, convert the area to gallons of paint: 45.9 m² × (1 gallon/32 m²) = 1.43 gallons. Therefore, Bridget will need 1.43 gallons of paint to repaint her bedroom. Choices A, C, and D are incorrect because they do not accurately calculate the required amount of paint based on the given dimensions and the coverage area of one gallon of paint.
3. What is the formula for the area of a circle?
- A. A = πr²
- B. A = 2πr
- C. A = πd
- D. A = 2πd
Correct answer: A
Rationale: The correct formula for the area of a circle is A = πr², where π is a mathematical constant approximately equal to 3.14159 and r is the radius of the circle. Choice B, A = 2πr, represents the circumference of a circle, not the area. Choice C, A = πd, incorrectly uses the diameter (d) instead of the radius in the formula for area. Choice D, A = 2πd, is also related to the circumference of the circle, not the area. Therefore, option A is the only correct formula for calculating the area of a circle.
4. A teacher earns $730.00 per week before any tax deductions. The following taxes are deducted each week: $72.00 federal income tax, $35.00 state income tax, and $65.00 Social Security tax. How much will the teacher make in 4 weeks after taxes are deducted?
- A. $2,250.00
- B. $2,550.00
- C. $2,400.00
- D. $2,232.00
Correct answer: D
Rationale: After deducting $172 weekly for taxes ($72 + $35 + $65), the teacher's net weekly income is $558. Over 4 weeks, the total income is $2,232.00. Choice A is incorrect as it does not account for the taxes deducted. Choice B is incorrect as it overestimates the income by not deducting the taxes. Choice C is incorrect as it also does not consider the tax deductions.
5. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?
- A. 10 °C
- B. 13 °C
- C. 15 °C
- D. 35 °C
Correct answer: B
Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$49/ 30 days
- 3,000 Questions with answers
- 30 days access