ATI TEAS 7
TEAS Practice Math Test
1. The first midwife uses 2/5 of her monthly contribution to pay for rent and utilities. She saves half of the remainder for incidental expenditures, and uses the rest of the money to purchase medical supplies. How much money does she spend on medical supplies each month?
- A. $600
- B. $800
- C. $1,000
- D. $1,200
Correct answer: A
Rationale: The first midwife contributes $2000. She spends $800 on rent and utilities. After paying for rent and utilities, $1200 remains. Half of this amount, which is $600, is saved for incidental expenditures. Therefore, the first midwife spends the remaining $600 on purchasing medical supplies each month. Choice A, $600, is the correct answer. Choices B, C, and D are incorrect as they do not accurately reflect the amount spent on medical supplies as calculated in the given scenario.
2. A sandwich shop earns $4 for every sandwich (s) it sells, $2 for every drink (d), and $1 for every cookie (c). If this is all the shop sells, which of the following equations represents what the shop’s revenue (r) is over three days?
- A. r = 4s + 2d + 1c
- B. r = 8s + 4d + 2c
- C. r = 12s + 6d + 3c
- D. r = 16s + 8d + 4c
Correct answer: A
Rationale: Let s be the number of sandwiches sold. Each sandwich earns $4, so selling s sandwiches at $4 each results in revenue of $4s. Similarly, d drinks at $2 each give $2d of income, and cookies bring in $1c. Summing these values gives total revenue = 4s + 2d + 1c. Therefore, option A, r = 4s + 2d + 1c, correctly represents the shop's revenue. Choices B, C, and D are incorrect because they incorrectly multiply the prices of each item by more than one day's sales, which would overstate the total revenue for a three-day period.
3. Which of the following best describes the data set below? 1, 1, 2, 2, 2, 2, 3, 3, 7, 7, 8, 8, 8, 8, 9, 9
- A. Uniform
- B. Right-skewed
- C. Bimodal
- D. Left-skewed
Correct answer: C
Rationale: The correct answer is C: Bimodal. A bimodal distribution has two distinct peaks or modes. In this data set, the numbers 2 and 8 appear more frequently than other numbers, creating two modes (2 and 8). Choices A, B, and D are incorrect. Option A, 'Uniform,' describes a distribution where all values have equal frequency, which is not the case in this data set. Options B and D, 'Right-skewed' and 'Left-skewed,' refer to distributions where the data is skewed towards one side, which is not observed in this dataset. Therefore, the data set is best described as bimodal.
4. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 30 cm². What is the actual area of the room?
- A. 30,000 cm²
- B. 300 m²
- C. 3,000 m²
- D. 30 m²
Correct answer: D
Rationale: On a 1:100 scale drawing, each centimeter represents one meter. The area of the room in the scale drawing is 30 cm², which means the actual area is 30 m². Choice A (30,000 cm²) is incorrect as it doesn't account for the scale conversion. Choice B (300 m²) is incorrect because it multiplies the scale area directly by 10,000, which is not the correct conversion. Choice C (3,000 m²) is also incorrect as it applies the scale factor incorrectly.
5. Solve for x: 3(x + 4) = 18
- A. x = 2
- B. x = 4
- C. x = 6
- D. x = 8
Correct answer: C
Rationale: To solve the equation 3(x + 4) = 18, first distribute the 3 to both terms inside the parentheses: 3x + 12 = 18. Next, isolate the variable x by subtracting 12 from both sides: 3x = 6. Finally, divide by 3 to solve for x, giving x = 6. Choice A, x = 2, is incorrect as the correct solution is x = 6. Choices B (x = 4) and D (x = 8) are also incorrect as they do not satisfy the given equation.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access