if a train travels 60 miles per hour for 2 hours how far does the train travel
Logo

Nursing Elites

ATI TEAS 7

ATI TEAS Math Practice Test

1. If a train travels 60 miles per hour for 2 hours, how far does the train travel?

Correct answer: C

Rationale: To find the distance traveled by the train, we use the formula Distance = Speed x Time. Given that the train travels at 60 miles per hour for 2 hours, the calculation would be 60 miles/hour x 2 hours = 120 miles. Therefore, the correct answer is 120 miles. Choice A (60 miles) is incorrect because it only represents the speed of the train, not the total distance traveled. Choice B (100 miles) is incorrect as it does not account for the full 2 hours of travel. Choice D (200 miles) is incorrect as it overestimates the distance by multiplying the speed by the time incorrectly.

2. In a fraction, which number is the numerator and which is the denominator?

Correct answer: A

Rationale: The correct answer is A: 'Numerator: top, Denominator: bottom.' In a fraction, the numerator is the top number, representing the part of the whole being considered, while the denominator is the bottom number, indicating the total number of equal parts into which the whole is divided. Choices B, C, and D are incorrect because they provide inaccurate descriptions of the numerator and denominator positions in a fraction.

3. A student gets 42 questions out of 48 correct on a quiz. What is the percentage of questions that the student answered correctly?

Correct answer: D

Rationale: To find the percentage of questions answered correctly, divide the number of correct questions by the total number of questions: 42/48 = 0.875. Multiply the result by 100 to express it as a percentage, which gives 87.5%. Therefore, the correct answer is 87.50%. Choice A (1.14%) is incorrect as it does not reflect the correct percentage. Choices B (82.50%) and C (85.00%) are also incorrect as they do not align with the calculation based on the given information.

4. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.

Correct answer: B

Rationale: The area of a circle is given by the formula A = π × r², where r is the radius. Since only half of the garden needs weeding, we calculate half the area. Using the given value of π (3.14) and a radius of 11.5 feet: A = 0.5 × 3.14 × (11.5)² A = 0.5 × 3.14 × 132.25 A = 0.5 × 415.27 A = 207.64 square feet. Thus, the area that needs weeding is approximately 207.64 square feet, making option B the correct answer. Choice A (207.64) is incorrect as it represents the total area of the circular garden, not just half of it. Choice C (519.08) and Choice D (726.73) are also incorrect as they do not reflect the correct calculation for finding the area of half the circular garden.

5. Simplify the following expression: 1.034 + 0.275 - 1.294

Correct answer: A

Rationale: To simplify the expression, begin by adding 1.034 and 0.275, which equals 1.309. Then, subtract 1.294 from the sum: 1.309 - 1.294 = 0.015. Therefore, the correct answer is 0.015. Choice B (0.15) is incorrect as it does not reflect the accurate calculation. Choice C (1.5) is incorrect as it is not the correct result of the expression simplification. Choice D (-0.15) is incorrect as it represents a different value than the correct outcome of the expression simplification.

Similar Questions

Bernard can make $80 per day. If he needs to make $300 and only works full days, how many days will this take?
If a box of 55 syringes costs $660.00, what is the cost of four syringes?
Which of the following describes a real-world situation that could be modeled by?
Solve the inequality for the unknown.
The cost of renting a car is $50 per day plus $0.25 per mile driven. If a customer rents the car for 3 days and drives 120 miles, what is the total cost?

Access More Features

ATI TEAS Premium Plus
$149.99/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses