ATI TEAS 7
TEAS Test Practice Math
1. A lab technician took 500 milliliters of blood from a patient. The technician used 16.66% of the blood for further tests. How many milliliters of blood were used for further tests? Round your answer to the nearest hundredth.
- A. 83
- B. 83.3
- C. 83.33
- D. 83.34
Correct answer: C
Rationale: To find the amount of blood used for further tests, we multiply 500 mL by 0.1666 (equivalent to 16.66%). This calculation results in 83.3, which rounded to the nearest hundredth is 83.33. Therefore, 83.33 milliliters of blood were used for further tests. Choice A is incorrect as it does not consider rounding to the nearest hundredth. Choices B and D are slightly off due to incorrect rounding. Choice C is the correct answer after rounding to the nearest hundredth.
2. Bridget is repainting her rectangular bedroom. Two walls measure 15 feet by 9 feet, and the other two measure 12.5 feet by 9 feet. One gallon of paint covers an average of 32 square meters. Which of the following is the number of gallons of paint that Bridget will use? (There are 3.28 feet in 1 meter.)
- A. 0.72 gallons
- B. 1.43 gallons
- C. 4.72 gallons
- D. 15.5 gallons
Correct answer: B
Rationale: First, convert the dimensions to meters: 15 ft. × (1 m/3.28 ft.) = 4.57 m; 9 ft. × (1 m/3.28 ft.) = 2.74 m; 12.5 ft. × (1 m/3.28 ft.) = 3.81 m. Next, find the total area in square meters: total area = 2(4.57 m × 2.74 m) + 2(3.81 m × 2.74 m) = 45.9 m². Finally, convert the area to gallons of paint: 45.9 m² × (1 gallon/32 m²) = 1.43 gallons. Therefore, Bridget will need 1.43 gallons of paint to repaint her bedroom. Choices A, C, and D are incorrect because they do not accurately calculate the required amount of paint based on the given dimensions and the coverage area of one gallon of paint.
3. On a floor plan drawn at a scale of 1:100, the area of a rectangular room is 50 cm². What is the actual area of the room?
- A. 500 m²
- B. 50 m²
- C. 5000 cm²
- D. 500 cm²
Correct answer: D
Rationale: The scale of 1:100 means that 1 cm² on the floor plan represents 100 cm² in real life. To find the actual area of the room, you need to multiply the area on the floor plan by the square of the scale factor. Since the scale is 1:100, the scale factor is 100. Therefore, 50 cm² on the floor plan represents 50 * 100 = 5000 cm² in real life. Choice A (500 m²) is incorrect as it converts the area from cm² to m² without considering the scale factor. Choice B (50 m²) is incorrect as it does not account for the scale factor. Choice C (5000 cm²) is incorrect as it gives the area on the floor plan, not the actual area.
4. What is the best estimate in meters for the average width of a doorway?
- A. 0.5
- B. 1
- C. 10
- D. 3
Correct answer: B
Rationale: The correct answer is B: 1. The average width of a doorway typically ranges from 0.8 to 1.2 meters, making 1 meter a reasonable estimate. Choice A (0.5) is too narrow for a standard doorway. Choice C (10) is too wide for a typical doorway. Choice D (3) is also wider than the standard width of a doorway.
5. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access