ATI TEAS 7
TEAS Test Math Prep
1. If , then
- A. 1
- B. 2
- C. 3
- D. 4
Correct answer: C
Rationale: If \(2x = 6\), then solving for \(x\), we have \(x = \frac{6}{2} = 3\). So, if \(x = 3\), then \(x+1 = 3+1 = 4\). Therefore, the value of \(x+1\) would be 4.
2. In a research study, a researcher collects data on the number of hours spent studying and the grades students received. Which of the following is the dependent variable?
- A. The number of hours spent studying
- B. The grades students received
- C. The subjects students studied
- D. The number of students in the study
Correct answer: B
Rationale: The correct answer is B: 'The grades students received.' In this scenario, the grades students received are the dependent variable because they are influenced by the number of hours spent studying. The grades are the outcome that is being measured based on the manipulation or observation of the independent variable, which in this case is the number of hours spent studying. Choices A, C, and D are incorrect. The number of hours spent studying is the independent variable being manipulated or observed, the subjects students studied is not directly related to the dependent variable, and the number of students in the study is not the variable being measured or influenced by the independent variable.
3. Which of the following algebraic equations correctly represents the sentence 'Four more than a number, x, is 2 less than 1/3 of another number, y'?
- A. x + 4 = (1/3)y - 2
- B. 4x = 2 - (1/3)y
- C. 4 - x = 2 + (1/3)y
- D. x + 4 = 2 - (1/3)y
Correct answer: A
Rationale: To represent 'Four more than a number, x', we write x + 4. This is equal to '2 less than 1/3 of another number, y', which translates to 1/3y - 2. Therefore, the correct equation is x + 4 = (1/3)y - 2. Choice B is incorrect as it incorrectly combines the values of x and y. Choice C is incorrect as it doesn't properly relate x and y with the given conditions. Choice D is incorrect as it doesn't correctly represent the relationship between x and y according to the given statement.
4. You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?
- A. 0.52%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: The relative error is calculated using the formula: (|Measured Value - True Value| / True Value) * 100%. Substituting the values given, we have (|36 - 75| / 75) * 100% = (39 / 75) * 100% ≈ 0.52 * 100% = 0.52%. Therefore, the relative error in measurement is approximately 0.52%. Choice A is correct because it reflects this calculation. Choice B is incorrect as it represents a lower relative error than the actual value obtained. Choice C is incorrect as it overestimates the relative error. Choice D is incorrect as it underestimates the relative error.
5. A closet is filled with red, blue, and green shirts. If 2/5 of the shirts are green and 1/3 are red, what fraction of the shirts are blue?
- A. 4/15
- B. 1/5
- C. 7/15
- D. 1/2
Correct answer: C
Rationale: To find the fraction of blue shirts, subtract the fractions of green and red shirts from 1. Green shirts are 2/5 and red shirts are 1/3, which sum up to 11/15. Therefore, blue shirts would be 1 - 11/15 = 4/15. So, the correct answer is 4/15. Choice A (4/15) is incorrect as it represents the overall fraction of green shirts. Choice B (1/5) is incorrect as it does not account for the fractions of green and red shirts. Choice D (1/2) is incorrect as it does not consider the given fractions of green and red shirts.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access