ATI TEAS 7
TEAS Test Practice Math
1. A woman wants to stack two small bookcases beneath a window that is 26 inches from the floor. The larger bookcase is 14 inches tall. The other bookcase is 8 inches tall. How tall will the two bookcases be when they are stacked together?
- A. 12 inches tall
- B. 22 inches tall
- C. 35 inches tall
- D. 41 inches tall
Correct answer: B
Rationale: When the woman stacks the two bookcases together, the total height will be the sum of the heights of the two bookcases. Therefore, 14 inches (larger bookcase) + 8 inches (smaller bookcase) = 22 inches. So, the stacked bookcases will be 22 inches tall. Choice A is incorrect because it does not account for the total height of both bookcases. Choice C and D are incorrect as they are higher than the combined height of the two bookcases.
2. Which of the following is listed in order from least to greatest? (-2, -3/4, -0.45, 3%, 0.36)
- A. -2, -3/4, -0.45, 3%, 0.36
- B. -3/4, -0.45, -2, 0.36, 3%
- C. -0.45, -2, -3/4, 3%, 0.36
- D. -2, -3/4, -0.45, 0.36, 3%
Correct answer: A
Rationale: To determine the order from least to greatest, convert all the values to a common form. When written in decimal form, the order is -2, -0.75 (which is equal to -3/4), -0.45, 0.03 (which is equal to 3%), and 0.36. Therefore, the correct order is -2, -3/4, -0.45, 3%, 0.36 (Choice A). Choice B is incorrect as it has the incorrect placement of -2 and 0.36. Choice C is incorrect as it incorrectly places -0.45 before -2. Choice D is incorrect as it incorrectly places 0.36 before 3%.
3. Solve for x: 3(x - 1) = 2(3x - 9)
- A. x = 2
- B. x = 8/3
- C. x = -5
- D. x = 5
Correct answer: D
Rationale: To solve the equation 3(x - 1) = 2(3x - 9), first distribute and simplify both sides to get 3x - 3 = 6x - 18. Next, subtract 3x from both sides to get -3 = 3x - 18. Then, add 18 to both sides to obtain 15 = 3x. Finally, divide by 3 to find x = 5. Therefore, the correct answer is x = 5. Choices A, B, and C are incorrect because they do not represent the correct solution to the given equation after proper algebraic manipulation.
4. A woman’s dinner bill comes to $48.30. If she adds a 20% tip, which of the following will be her total bill?
- A. $9.66
- B. $38.64
- C. $48.30
- D. $57.96
Correct answer: D
Rationale: To calculate the total bill after adding a 20% tip, you need to find 120% of the original bill. This is because adding a 20% tip means paying 120% of the bill. So, $48.30 × 120/100 = $57.96. Therefore, the correct answer is $57.96. Choice A ($9.66) is incorrect as it represents only the 20% tip amount. Choice B ($38.64) is incorrect as it is the original bill amount without the tip. Choice C ($48.30) is incorrect as it is the original bill amount and does not include the additional 20% tip.
5. A commuter survey counts the people riding in cars on a highway in the morning. Each car contains only one man, only one woman, or both one man and one woman. Out of 25 cars, 13 contain a woman and 20 contain a man. How many contain both a man and a woman?
- A. 4
- B. 7
- C. 8
- D. 13
Correct answer: C
Rationale: Let's denote the number of cars containing only a man as M, only a woman as W, and both a man and a woman as B. Given that there are 25 cars in total, we have: M + W + B = 25 From the information provided, we know that 13 cars contain a woman (W) and 20 cars contain a man (M). Since each car contains either one man, one woman, or both, the cars that contain both a man and a woman (B) are counted once in each of the M and W categories. Therefore, to find out how many cars contain both a man and a woman, we need to subtract the number of cars that contain only a man and only a woman from the total cars. M + B = 20 (as 20 cars contain a man) W + B = 13 (as 13 cars contain a woman) Solving the above two equations simultaneously, we get: M = 12, W = 5, B = 8 Therefore, 8 cars contain both a man and a woman. Hence, the correct answer is 8. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on the information provided.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access