ATI TEAS 7
Practice Math TEAS TEST
1. What defines a proper fraction versus an improper fraction?
- A. Proper: numerator < denominator; Improper: numerator > denominator
- B. Proper: numerator > denominator; Improper: numerator < denominator
- C. Proper: numerator = denominator; Improper: numerator < denominator
- D. Proper: numerator < denominator; Improper: numerator = denominator
Correct answer: A
Rationale: A proper fraction is characterized by having a numerator smaller than the denominator, while an improper fraction has a numerator larger than the denominator. Therefore, choice A is correct. Choice B is incorrect because it states the opposite relationship between the numerator and denominator for proper and improper fractions. Choice C is incorrect as it describes a fraction where the numerator is equal to the denominator, which is a different concept. Choice D is incorrect as it associates a numerator being smaller than the denominator with an improper fraction, which is inaccurate.
2. Mathew has to earn more than 96 points on his high school entrance exam in order to be eligible for varsity sports. Each question is worth 3 points, and the test has a total of 40 questions. Let x represent the number of test questions. How many questions can Mathew answer incorrectly and still qualify for varsity sports?
- A. x > 32
- B. x > 8
- C. 0 ≤ x < 8
- D. 0 ≤ x ≤ 8
Correct answer: C
Rationale: To determine the number of correct answers Mathew needs, solve the inequality: 3x > 96. This simplifies to x > 32. Therefore, Mathew must answer more than 32 questions correctly to qualify for varsity sports. Since the test consists of 40 questions, he can afford to answer at most 40 - 32 = 8 questions incorrectly. Therefore, the correct answer is 0 ≤ x < 8. Option A (x > 32) is incorrect as it suggests Mathew needs to answer more than 32 questions correctly, which is not the case. Option B (x > 8) is also incorrect as it does not account for the total number of questions in the test. Option D (0 ≤ x ≤ 8) is incorrect as it includes the possibility of answering all questions incorrectly, which is not allowed for Mathew to qualify for varsity sports.
3. Express 3 5/7 as an improper fraction.
- A. 26/7
- B. 21/7
- C. 22/7
- D. 26/5
Correct answer: A
Rationale: To convert a mixed number to an improper fraction, multiply the whole number by the denominator of the fraction, then add the numerator. In this case, 3 * 7 + 5 = 21 + 5 = 26. So, 3 5/7 as an improper fraction is 26/7. Choice B (21/7) is incorrect because it represents the original fraction 3 5/7. Choice C (22/7) is incorrect and represents a different fraction. Choice D (26/5) is incorrect and does not reflect the proper conversion of the mixed number to an improper fraction.
4. Divide 4/3 by 9/13 and reduce the fraction.
- A. 52/27
- B. 51/27
- C. 52/29
- D. 51/29
Correct answer: A
Rationale: To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. So, (4/3) ÷ (9/13) = (4/3) * (13/9) = 52/27. This fraction is already in its reduced form, making choice A the correct answer. Choices B, C, and D are incorrect as they do not represent the correct result of dividing the fractions 4/3 by 9/13.
5. If ð‘› = 8, then n is between which of the following ranges?
- A. 5 and 7
- B. 7 and 9
- C. 9 and 11
- D. 3 and 5
Correct answer: B
Rationale: To find the range where n lies when n = 8, we consider numbers greater and lesser than 8. The range would be between 7 and 9, not 9 and 11 as stated in the original rationale. Option A (5 and 7) and Option D (3 and 5) are lower ranges, while Option C (9 and 11) exceeds the upper limit.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$149.99/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$1/ 30 days
- 3,000 Questions with answers
- 30 days access