ATI TEAS 7
Practice Math TEAS TEST
1. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
2. University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
- A. 120
- B. 100
- C. 60
- D. 50
Correct answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
3. A set of patients is divided into groups: 1/2 in Group Alpha, 1/3 in Group Beta, and 1/6 in Group Gamma. Order the groups from smallest to largest.
- A. Alpha, Beta, Gamma
- B. Alpha, Gamma, Beta
- C. Gamma, Alpha, Beta
- D. Gamma, Beta, Alpha
Correct answer: C
Rationale: To determine the order from smallest to largest groups, we look at the fractions representing the groups. Group Gamma has 1/6, which is the smallest fraction, followed by Group Alpha with 1/2, and Group Beta with 1/3 being the largest fraction. So, the correct order is Gamma, Alpha, Beta. Choice A is incorrect because it lists Alpha, Beta, Gamma, which is the reverse order. Choice B is incorrect as it lists Alpha, Gamma, Beta, which is also incorrect. Choice D is incorrect as it lists Gamma, Beta, Alpha, which is not the correct order based on the fractions provided.
4. A bucket can hold 2500 mL. How many liters can the bucket hold?
- A. 0.25 L
- B. 25 L
- C. 2.5 L
- D. 250 L
Correct answer: C
Rationale: To convert milliliters (mL) to liters (L), you divide by 1000 since 1000 mL is equivalent to 1 liter. Therefore, 2500 mL is equal to 2.5 liters (2500 mL ÷ 1000 = 2.5 L). Choice A (0.25 L) is incorrect as it represents a conversion error by a factor of 10. Choice B (25 L) is incorrect as it incorrectly multiplies instead of dividing by 1000. Choice D (250 L) is incorrect as it overestimates the conversion by a factor of 100.
5. A patient requires a 30% increase in the dosage of their medication. Their current dosage is 270 mg. What will their dosage be after the increase?
- A. 81 mg
- B. 270 mg
- C. 300 mg
- D. 351 mg
Correct answer: D
Rationale: To calculate a 30% increase from the current dosage of 270 mg, first find 30% of 270, which is 81 mg. Add this 81 mg increase to the original dosage of 270 mg to get the new dosage, which is 351 mg (270 mg + 81 mg = 351 mg). Therefore, the correct answer is 351 mg. Choice A (81 mg) is incorrect because this value represents only the calculated 30% increase, not the total dosage after the increase. Choice B (270 mg) is the original dosage and does not account for the 30% increase. Choice C (300 mg) is close to the correct answer but does not consider the precise 30% increase calculation, leading to an incorrect total dosage.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access