ATI TEAS 7
Practice Math TEAS TEST
1. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
2. You measure the width of your door to be 36 inches. The true width of the door is 75 inches. What is the relative error in your measurement?
- A. 0.52%
- B. 0.01%
- C. 0.99%
- D. 0.10%
Correct answer: A
Rationale: The relative error is calculated using the formula: (|Measured Value - True Value| / True Value) * 100%. Substituting the values given, we have (|36 - 75| / 75) * 100% = (39 / 75) * 100% ≈ 0.52 * 100% = 0.52%. Therefore, the relative error in measurement is approximately 0.52%. Choice A is correct because it reflects this calculation. Choice B is incorrect as it represents a lower relative error than the actual value obtained. Choice C is incorrect as it overestimates the relative error. Choice D is incorrect as it underestimates the relative error.
3. The hypotenuse (side C) of a triangle is 13 inches long. Which of the following pairs of measurements could be correct for the lengths of the other two sides of the triangle? (Note: A² + B² = C²)
- A. 5 inches, 12 inches
- B. 2.5 inches, 6 inches
- C. 2.5 inches, 4 inches
- D. 5 inches, 8 inches
Correct answer: A
Rationale: The correct answer is A. Using the Pythagorean theorem (A² + B² = C²), we substitute the values: 5² + 12² = 13². This simplifies to 25 + 144 = 169, which is true. Therefore, 5 inches and 12 inches could be the lengths of the other two sides. Choices B, C, and D do not satisfy the Pythagorean theorem, making them incorrect options.
4. What number is 20 equal to 40% of?
- A. 50
- B. 8
- C. 200
- D. 5000
Correct answer: A
Rationale: To find the number that 20 is equal to 40% of, you can set up the equation: 20 = 0.4 * x, where x is the unknown number. To solve for x, divide both sides of the equation by 0.4. This gives x = 20 / 0.4 = 50. Therefore, 20 is 40% of 50. Choice B, 8, is incorrect because 20 is not equal to 40% of 8. Choice C, 200, is incorrect because 20 is not equal to 40% of 200. Choice D, 5000, is incorrect because 20 is not equal to 40% of 5000. The correct answer is 50.
5. The total perimeter of a rectangle is 36 cm. If the length of each side is 12 cm, what is the width?
- A. 3 cm
- B. 12 cm
- C. 6 cm
- D. 8 cm
Correct answer: C
Rationale: The formula for the perimeter of a rectangle is P = 2(l + w), where P is the perimeter, l is the length, and w is the width. Given that the total perimeter is 36 cm and each side's length is 12 cm, we substitute the values into the formula: 36 = 2(12 + w). Solving for w gives us w = 6. Therefore, the width of the rectangle is 6 cm. Choice A (3 cm) is incorrect because the width is not half of the length. Choice B (12 cm) is the length, not the width. Choice D (8 cm) is incorrect as it does not match the calculated width of 6 cm.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access