ATI TEAS 7
Practice Math TEAS TEST
1. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32ยฐF and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
2. Solve this equation: 2x+8=0
- A. -4
- B. 3
- C. 5
- D. 0
Correct answer: A
Rationale: To solve 2 ๐ฅ + 8 = 0 2x+8=0: Subtract 8 from both sides: 2 ๐ฅ = โ 8 2x=โ8 Divide both sides by 2: ๐ฅ = โ 8 2 = โ 4 x= 2 โ8 โ =โ4 Therefore, the solution is ๐ฅ = โ 4 x=โ4.
3. A student gets 42 questions out of 48 correct on a quiz. What is the percentage of questions that the student answered correctly?
- A. 1.14%
- B. 82.50%
- C. 85.00%
- D. 87.50%
Correct answer: D
Rationale: To find the percentage of questions answered correctly, divide the number of correct questions by the total number of questions: 42/48 = 0.875. Multiply the result by 100 to express it as a percentage, which gives 87.5%. Therefore, the correct answer is 87.50%. Choice A (1.14%) is incorrect as it does not reflect the correct percentage. Choices B (82.50%) and C (85.00%) are also incorrect as they do not align with the calculation based on the given information.
4. A taxi service charges $50 for the first mile, $50 for each additional mile, and 20ยข per minute of waiting time. Joan took a cab from her place to a flower shop 8 miles away, where she bought a bouquet, then another 6 miles to her mother's place. The driver had to wait 9 minutes while she bought the bouquet. What was the fare?
- A. $650
- B. $710
- C. $701.80
- D. $650
Correct answer: C
Rationale: To calculate the fare, first, determine the cost for the distance traveled. Joan traveled a total of 14 miles (8 miles to the flower shop + 6 miles to her mother's place). The first mile costs $50, and the remaining 13 miles cost $50 each, totaling $700 for the distance. Additionally, the driver waited for 9 minutes, which incurs an additional cost of $1.80 (9 minutes x $0.20 per minute). Therefore, the total fare is calculated as: Cost for distance + Cost for waiting time = $50 + $650 + $1.80 = $701.80. Choice A, $650, is incorrect as it does not consider the waiting time cost. Choice B, $710, is incorrect as it does not accurately calculate the total fare. Choice D, $650, is incorrect for the same reason as Choice A. The correct total fare is $701.80.
5. What is an equivalent fraction?
- A. A fraction that looks different but represents the same value
- B. A fraction that is smaller than another fraction
- C. A fraction that is larger than another fraction
- D. A fraction that has the same numerator as another fraction
Correct answer: A
Rationale: An equivalent fraction is a fraction that may look different in terms of its numerator and denominator but still represents the same value or quantity. This means that when you simplify or expand a fraction, its value remains unchanged. Choice B and C are incorrect because equivalent fractions are not determined by being smaller or larger than another fraction; it is about representing the same quantity. Choice D is incorrect because equivalent fractions may have different numerators as long as the ratio between the numerator and denominator remains the same.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access