ATI TEAS 7
Practice Math TEAS TEST
1. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
2. A circular swimming pool has a circumference of 49 feet. What is the diameter of the pool?
- A. 15.6 feet
- B. 17.8 feet
- C. 49 feet
- D. 153.9 feet
Correct answer: A
Rationale: The formula for the circumference of a circle is C = πd, where C is the circumference and d is the diameter. Given C = 49 feet, we can rearrange the formula to solve for d: 49 feet = πd. To find the diameter, we divide both sides by π, giving us d = 49 feet / π ≈ 15.6 feet. Therefore, the diameter of the swimming pool is approximately 15.6 feet. Choices B, C, and D are incorrect because they do not align with the calculation based on the formula for the circumference of a circle.
3. Curtis measured the temperature of water in a flask in his science class. The temperature of the water was 35 °C. He carefully heated the flask so that the temperature of the water increased by about 2 °C every 3 minutes. Approximately how much had the temperature of the water increased after 20 minutes?
- A. 10 °C
- B. 13 °C
- C. 15 °C
- D. 35 °C
Correct answer: B
Rationale: To find the increase in temperature after 20 minutes, calculate how many 3-minute intervals are in 20 minutes (20 ÷ 3 = 6.66, rounding to 7 intervals). Then, multiply the temperature increase per interval (2 °C) by the number of intervals (7 intervals), giving a total increase of 14 °C. Therefore, after 20 minutes, the temperature of the water would have increased by approximately 14 °C. Choice A, 10 °C, is incorrect as it underestimates the total increase. Choice C, 15 °C, is incorrect as it overestimates the total increase. Choice D, 35 °C, is incorrect as it represents the initial temperature of the water, not the increase in temperature.
4. Half of a circular garden with a radius of 11.5 feet needs weeding. Find the area in square feet that needs weeding. Round to the nearest hundredth. Use 3.14 for π.
- A. 207.64
- B. 415.27
- C. 519.08
- D. 726.73
Correct answer: B
Rationale: The area of a circle is given by the formula A = π × r², where r is the radius. Since only half of the garden needs weeding, we calculate half the area. Using the given value of π (3.14) and a radius of 11.5 feet: A = 0.5 × 3.14 × (11.5)² A = 0.5 × 3.14 × 132.25 A = 0.5 × 415.27 A = 207.64 square feet. Thus, the area that needs weeding is approximately 207.64 square feet, making option B the correct answer. Choice A (207.64) is incorrect as it represents the total area of the circular garden, not just half of it. Choice C (519.08) and Choice D (726.73) are also incorrect as they do not reflect the correct calculation for finding the area of half the circular garden.
5. Which of the following equations does not represent a function?
- A. y = x^2
- B. y = sqrt(x)
- C. x = y^2
- D. y = 2x + 1
Correct answer: C
Rationale: An equation represents a function if each input (x-value) corresponds to exactly one output (y-value). In the equation x = y^2, for a single x-value, there are two possible y-values (positive and negative square root), violating the definition of a function. This violates the vertical line test, where a vertical line intersects the graph in more than one point for non-functions. Choices A, B, and D all pass the vertical line test and represent functions, making them incorrect answers.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access