ATI TEAS 7
Practice Math TEAS TEST
1. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?
- A. Fahrenheit to Celsius: Subtract 32, then divide by 1.8; Celsius to Fahrenheit: Multiply by 1.8, then add 32
- B. Fahrenheit to Celsius: Subtract 32, then divide by 2; Celsius to Fahrenheit: Multiply by 1.8, then add 20
- C. Fahrenheit to Celsius: Multiply by 2, then add 32; Celsius to Fahrenheit: Subtract 32, then divide by 1.8
- D. Fahrenheit to Celsius: Subtract 30, then divide by 1.8; Celsius to Fahrenheit: Multiply by 2, then add 32
Correct answer: A
Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.
2. Kyle has $950 in savings and wishes to donate one-fifth of it to 8 local charities. He estimates that he will donate around $30 to each charity. Which of the following correctly describes the reasonableness of his estimate?
- A. It is reasonable because $190 is one-fifth of $950
- B. It is reasonable because $190 is less than one-fifth of $1,000
- C. It is not reasonable because $240 is more than one-fifth of $1,000
- D. It is not reasonable because $240 is one-fifth of $1,000
Correct answer: C
Rationale: Kyle initially had $950 in savings, and one-fifth of that amount would be $190. Since he wishes to donate around $30 to each charity, the total amount he would donate to 8 local charities would be $30 x 8 = $240. This amount is more than one-fifth of $1,000, making the estimate not reasonable. Choice A is incorrect because $190 is the correct one-fifth of $950, not $900. Choice B is incorrect as it compares $190 to a different amount ($1,000) rather than the actual total. Choice D is incorrect as it states that $240 is one-fifth of $1,000, which is inaccurate.
3. If you have a rectangle with a width of 5 inches and a length of 10 inches and scale it by a factor of 2, what will the new perimeter be?
- A. 30 inches
- B. 40 inches
- C. 60 inches
- D. 50 inches
Correct answer: C
Rationale: When a rectangle is scaled by a factor of 2, both the length and width are multiplied by 2. The new dimensions become width = 5 * 2 = 10 inches and length = 10 * 2 = 20 inches. Therefore, the new perimeter is calculated as 2 * (10 + 20) = 60 inches. Choice A, B, and D are incorrect as they do not reflect the correct calculation based on scaling the dimensions of the rectangle.
4. A closet is filled with red, blue, and green shirts. If 2/5 of the shirts are green and 1/3 are red, what fraction of the shirts are blue?
- A. 4/15
- B. 1/5
- C. 7/15
- D. 1/2
Correct answer: C
Rationale: To find the fraction of blue shirts, subtract the fractions of green and red shirts from 1. Green shirts are 2/5 and red shirts are 1/3, which sum up to 11/15. Therefore, blue shirts would be 1 - 11/15 = 4/15. So, the correct answer is 4/15. Choice A (4/15) is incorrect as it represents the overall fraction of green shirts. Choice B (1/5) is incorrect as it does not account for the fractions of green and red shirts. Choice D (1/2) is incorrect as it does not consider the given fractions of green and red shirts.
5. In a study on anorexia, 100 patients participated. Among them, 70% were women, and 10% of the men were overweight as children. How many male patients in the study were not overweight as children?
- A. 3
- B. 10
- C. 27
- D. 30
Correct answer: C
Rationale: Out of the 100 patients, 30% were men. Since 10% of the men were overweight as children, 90% of the male patients were not overweight. Therefore, the number of male patients not overweight as children can be calculated as 30 (total male patients) x 0.90 = 27. Choices A, B, and D are incorrect because they do not accurately calculate the number of male patients who were not overweight as children based on the given information.
Similar Questions
Access More Features
ATI TEAS Premium Plus
$150/ 90 days
- Actual ATI TEAS 7 Questions
- 3,000 questions with answers
- 90 days access
ATI TEAS Basic
$99/ 30 days
- 3,000 Questions with answers
- 30 days access