how do you convert f to c and c to f
Logo

Nursing Elites

ATI TEAS 7

Practice Math TEAS TEST

1. How do you convert Fahrenheit to Celsius and Celsius to Fahrenheit?

Correct answer: A

Rationale: To convert Fahrenheit to Celsius, you start by subtracting 32 from the Fahrenheit temperature and then divide the result by 1.8. This formula accounts for the freezing point of water at 32°F and the conversion factor to Celsius. To convert Celsius to Fahrenheit, you multiply the Celsius temperature by 1.8 and then add 32. This process takes into consideration the conversion factor from Celsius to Fahrenheit and the freezing point of water. Choice B is incorrect as dividing by 2 instead of 1.8 would yield an inaccurate conversion. Choice C is incorrect as it involves incorrect operations for both conversions. Choice D is incorrect as subtracting 30 instead of 32 for Fahrenheit to Celsius and multiplying by 2 instead of 1.8 for Celsius to Fahrenheit would provide incorrect results.

2. Simplify the following expression: 0.0178 × 2.401

Correct answer: B

Rationale: To simplify the expression 0.0178 × 2.401, you multiply the two numbers to get the result. Therefore, 0.0178 × 2.401 = 0.0427378. Choice A (2.0358414), Choice C (0.2341695), and Choice D (0.348324) are incorrect as they do not represent the correct result of the multiplication operation.

3. One roommate is saving to buy a house, so each month, he puts money aside in a special house savings account. The ratio of his monthly house savings to his rent is 1:3. If he pays $270 per month in rent, how much money does he put into his house savings account each month?

Correct answer: A

Rationale: The ratio of his savings to his rent is 1:3, which means that for every $3 he pays in rent, he saves $1 for the purchase of a house. To calculate the amount saved, divide $270 by 3: $270 ÷ 3 = $90. Therefore, he puts $90 into his house savings account each month. Choice B, $270, is incorrect because that is the amount he pays in rent, not the amount saved. Choices C and D, $730 and $810, are incorrect as they do not align with the 1:3 ratio described in the question.

4. 67 miles is equivalent to how many kilometers to three significant digits?

Correct answer: A

Rationale: To convert miles to kilometers, the conversion factor is 1 mile ≈ 1.609 kilometers. Therefore, to convert 67 miles to kilometers, you would multiply: 67 miles × 1.609 km/mile = 107.703 km. When rounded to three significant digits, this gives 108 km. Therefore, 67 miles is approximately 108 kilometers. Choice A is correct because it is the closest rounded value to three significant digits. Choices B, C, and D are incorrect as they do not match the calculated conversion of 108 km.

5. Which of the following is the y-intercept of the line whose equation is 7y − 42x + 7 = 0?

Correct answer: C

Rationale: To find the y-intercept, set x = 0 in the equation 7y − 42x + 7 = 0. This simplifies to 7y - 42(0) + 7 = 0, which gives 7y = -7. Solving for y, we get y = -1. Therefore, the y-intercept is where x = 0, so the correct answer is (0, -1). Choice A (1/6, 0) is incorrect as it does not satisfy the given equation when x = 0. Choice B (6, 0) is incorrect as it represents the x-intercept. Choice D (-1, 0) is incorrect as it does not correspond to the y-intercept of the given equation.

Similar Questions

Simplify the following expression: 6 + 7 × 3 - 4 × 2
Solve the equation 8x − 6 = 3x + 24. Which of the following is the correct solution?
Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?
The phone bill is calculated each month using the equation y = 50x. The cost of the phone bill per month is represented by y and x represents the gigabytes of data used that month. What is the value and interpretation of the slope of this equation?
Solve for x: 2x - 7 = 3

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses