there are 20 mg of acetaminophen in concentrated infant drops if the proper dosage for a four year old child is 240 mg how many milliliters should the
Logo

Nursing Elites

ATI TEAS 7

TEAS Math Questions

1. There are 20 mg of acetaminophen in concentrated infant drops. If the proper dosage for a four-year-old child is 240 mg, how many milliliters should the child receive?

Correct answer: C

Rationale: To find the correct dosage in milliliters, divide the total required dosage in milligrams (240 mg) by the concentration of the medication in milligrams per milliliter (20 mg/mL). This calculation yields 12 mL, which is the recommended volume for the child. Choice A, 0.8 mL, is incorrect as it does not correspond to the correct dosage. Choice B, 1.6 mL, is incorrect because it also does not match the calculated dosage. Choice D, 3.2 mL, is incorrect as it is not the accurate result of the dosage calculation. Therefore, the correct answer is C, 2.4 mL.

2. How many gallons are in 1,000 fluid ounces?

Correct answer: A

Rationale: To convert fluid ounces to gallons, you need to divide the number of fluid ounces by the number of fluid ounces in a gallon. Since there are 128 fluid ounces in a gallon, to find out how many gallons are in 1,000 fluid ounces, you divide 1,000 by 128. The correct calculation is 1,000 / 128 = 7.8125 gallons. Therefore, the correct answer is A. Choices B, C, and D are incorrect as they do not accurately represent the conversion from fluid ounces to gallons.

3. x ÷ 7 = x − 36. Solve the equation. Which of the following is correct?

Correct answer: B

Rationale: To solve the equation x ÷ 7 = x − 36, start by multiplying both sides by 7 to get 7(x ÷ 7) = 7(x − 36), which simplifies to x = 7x − 252. Next, subtract 7x from both sides to get -6x = -252. Finally, divide both sides by -6 to solve for x, which results in x = 42. Therefore, the correct answer is x = 42. Choice A (x = 6), Choice C (x = 4), and Choice D (x = 252) are incorrect as they do not align with the correct solution derived from the equation.

4. Simplify the following expression:

Correct answer: A

Rationale: To simplify the given expression, start by performing the division first: (2/3) ÷ (4/15) = (2/3) × (15/4) = 30/12 = 5/2. Next, multiply this result by 5/8: 5/2 × 5/8 = 25/16 = 1 9/16. Therefore, the correct answer is A. Choice B (1 1/4) is incorrect as it does not match the simplified result. Choice C (2 1/8) is incorrect as it does not represent the simplified expression. Choice D (2) is incorrect as it does not account for the fractions in the original expression.

5. What is the probability of flipping a coin and getting heads?

Correct answer: A

Rationale: The correct answer is A: 1/2. When flipping a fair coin, there are two possible outcomes: heads or tails. The probability of getting heads is 1 out of 2 possible outcomes, which can be expressed as 1/2. Choice B, 1/3, is incorrect because a fair coin only has two sides. Choices C and D, 1/4 and 1/5, are also incorrect as they do not represent the correct probability of getting heads when flipping a coin.

Similar Questions

A recipe calls for 5.5 teaspoons of vanilla. 1 teaspoon equals approximately 4.93 mL. Which of the following is the correct amount of vanilla in mL?
How many cubic inches of water could the aquarium hold if it were filled completely? (Dimensions: 30 in × 10 in × 12 in)
During January, Dr. Lewis worked 20 shifts. During February, she worked three times as many shifts as she did during January. During March, she worked half the number of shifts she worked during February. Which equation below describes the number of shifts Dr. Lewis worked in March?
The hypotenuse (side C) of a triangle is 13 inches long. Which of the following pairs of measurements could be correct for the lengths of the other two sides of the triangle? (Note: A² + B² = C²)
Five of six numbers have a sum of 25. The average of all six numbers is 6. What is the sixth number?

Access More Features

ATI TEAS Premium Plus
$150/ 90 days

  • Actual ATI TEAS 7 Questions
  • 3,000 questions with answers
  • 90 days access

ATI TEAS Basic
$99/ 30 days

  • 3,000 Questions with answers
  • 30 days access

Other Courses